设A为n阶非零实矩阵,A*=AT,其中A*为A的伴随矩阵.证明:A可逆? 我来答 1个回答 #热议# 发烧为什么不能用酒精擦身体来退烧? 大沈他次苹0B 2022-10-03 · TA获得超过7325个赞 知道大有可为答主 回答量:3059 采纳率:100% 帮助的人:178万 我也去答题访问个人页 关注 展开全部 A为非零矩阵 所以A的秩>0 假设A不可逆 则A的秩=r(A)+r(B)-n可知 0=r(|A|E)=r(A*A)>=r(A*)+r(A)-n =r(A*)-1 从而r(A*)0 从而r(A*)=1 于是r(AT)=r(A)=r(A*)=1 从而n=2 这个时候验证一下就知道不存在这样的A (2)A的秩 r(A),9, 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: