当x趋向于无穷大时,e的x次方的极限是多少?
1个回答
展开全部
原式化简为(1+x/4)/e^(x/2),等于1/e^(x/2)+x/(4e^(x/2)),e^(x/2)的极限是正无穷大,所以1/e^x/2的极限是0,再看x/(4e^(x/2),当x趋向无穷大时,x与ex相等,所以为1,即上式的极限是1/4,最后相加是1/4.,12,当x趋向于无穷大时,e的x次方的极限是多少
当x趋向于正无穷大,e的x/2乘以1+1/4x并除以e的x次方的极限是多少 怎么求?
当x趋向于正无穷大,e的x/2乘以1+1/4x并除以e的x次方的极限是多少 怎么求?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询