一道高数微分题目,用泰勒公式做Lim(n->0)(x^2/2+1-(1+x^2)^(1/2))/(x^2*(sinx)^?
1个回答
展开全部
由泰勒公式有(1+x^2)^(1/2)=1+x^2/2-x^4/8+O(x^4)
sinx=x+0(x^2) ,则原式=【x^4/8-O(x^4)】/ x^2*(x^2+0(x^3))=【x^4/8-O(x^4)】/ x^4+0(x^4))=1/8,7,一道高数微分题目,用泰勒公式做
Lim(n->0)(x^2/2+1-(1+x^2)^(1/2))/(x^2*(sinx)^2)用泰勒公式求解
sinx=x+0(x^2) ,则原式=【x^4/8-O(x^4)】/ x^2*(x^2+0(x^3))=【x^4/8-O(x^4)】/ x^4+0(x^4))=1/8,7,一道高数微分题目,用泰勒公式做
Lim(n->0)(x^2/2+1-(1+x^2)^(1/2))/(x^2*(sinx)^2)用泰勒公式求解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询