数列1,2+1/2,3+1/2+1/4,…,n+1/2+1/4+…+1/2n-1的前n项和为( )
1个回答
展开全部
通项是an=n+1/2+1/4+...+1/2^(n-1)
=(n-1)+1+1/2+1/4+...+1/2^(n-1)
=(n-1)+1*[1-(1/2)^n]/(1-1/2)
=n-1+2(1-1/2^n)
=(n+1)-1/2^(n-1)
所以前n项和是
Sn=a1+a2+...+an
=[(1+1)-1/2^(1-1)]+[(2+1)-1/2^(2-1)]+...+[(n+1)-1/2^(n-1)]
=[2+3+...+(n+1)]-[1+1/2+...+1/2^(n-1)]
=n(n+3)/2-1*[1-(1/2)^n]/(1-1/2)
=n(n+3)/2-2+1/2^(n-1)
=(n-1)+1+1/2+1/4+...+1/2^(n-1)
=(n-1)+1*[1-(1/2)^n]/(1-1/2)
=n-1+2(1-1/2^n)
=(n+1)-1/2^(n-1)
所以前n项和是
Sn=a1+a2+...+an
=[(1+1)-1/2^(1-1)]+[(2+1)-1/2^(2-1)]+...+[(n+1)-1/2^(n-1)]
=[2+3+...+(n+1)]-[1+1/2+...+1/2^(n-1)]
=n(n+3)/2-1*[1-(1/2)^n]/(1-1/2)
=n(n+3)/2-2+1/2^(n-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询