2个回答
展开全部
∫(D)∫ln(1+x^2+y^2)dxdy
D:x^2+y^2=1与 两坐标所围成的位于第一象限内的闭区
ρ=1,θ从0,到π/2
dS=ρdθdρ
∫(D)∫ln(1+x^2+y^2)dxdy
=∫[0,1]∫[0,π/2]ln(1+ρ^2) ρdθdρ
=∫[0,1]ln(1+ρ^2) ρdρ∫[0,π/2]dθ
=(π/4)∫[0,1]ln(1+ρ^2)d(1+ρ^2) ∫lnxdx=xlnx-x+C
=(π/4)(2ln2-1)
D:x^2+y^2=1与 两坐标所围成的位于第一象限内的闭区
ρ=1,θ从0,到π/2
dS=ρdθdρ
∫(D)∫ln(1+x^2+y^2)dxdy
=∫[0,1]∫[0,π/2]ln(1+ρ^2) ρdθdρ
=∫[0,1]ln(1+ρ^2) ρdρ∫[0,π/2]dθ
=(π/4)∫[0,1]ln(1+ρ^2)d(1+ρ^2) ∫lnxdx=xlnx-x+C
=(π/4)(2ln2-1)
追问
ρ=1;dS=ρdθdρ的/2
是什么意思,还有你后面算错数了
追答
dxdy=dS=ρdθdρ
=(π/4)∫[0,1]ln(1+ρ^2)d(1+ρ^2) ∫lnxdx=xlnx-x+C
=(π/4)[(2ln2-2) -(1*ln1-1)]
=(π/4)(2ln2-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询