函数可微,偏导数一定存在且连续吗?
1个回答
展开全部
函数可微,那么偏导数一定存在,且连续。
若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
扩展资料
偏导数的几何意义:
二元函数z=f(x,y)在点(x0,y0)处的偏导数f'x(x0,y0)是曲面z=f(x,y)与平面y=y0的交线,即是平行于zOx坐标面的平面y=y0上的曲线z=f(x,y0)在点P(x0,y0,f(x0,y0))处的切线的斜率,也就是切线与该平面和xOy的交线。
沿x轴方向的夹角的正切,如果把切线平移到zOx面上的话,夹角就是切线对x轴的倾斜角。偏导数的几何意义:就是一条曲线上的斜率。
参考资料来源:
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询