
急求数学必修四课后P143习题3.2答案,在线等!! A组 1.求证 (2)tan a/2 -1/(tan a/)= -2/tan a
(3)tan(x/2+π/4)+tan(x/2-π/4)=2tanxB组1.求证(1)3+cos4a-4cos2a=8sin^4a(sin的右上方还有个4次方)(2)ta...
(3)tan (x/2+π/4)+tan(x/2-π/4)=2tanx
B组
1.求证
(1)3+cos4a-4cos2a=8sin^4 a (sin的右上方还有个4次方)
(2)tanatan2a/(tan2a-tana)+根号3(sin^2 a-cos^2 a)=2sin(2a-π/3) 展开
B组
1.求证
(1)3+cos4a-4cos2a=8sin^4 a (sin的右上方还有个4次方)
(2)tanatan2a/(tan2a-tana)+根号3(sin^2 a-cos^2 a)=2sin(2a-π/3) 展开
展开全部
(1)3+cos4a-4cos2a=3+2cos2a^2-1-4cos2a=2(1+cos2a^2-2cos2a)=2(1-cos2a)^2=2(2sina^2)^2=8sina^4
(3) tan(x/2+π/4)+tan(x/2-π/4)
=[tan(x/2)+tan(π/4)]/[1-tan(x/2)tan(π/4)]+[tan(x/2)-tan(π/4)]/[1+tan(x/2)tan(π/4)]
=[tan(x/2)+1]/[1-tan(x/2)]+[tan(x/2)-1]/[1+tan(x/2)]
=[(tan(x/2)+1)^2-(tan(x/2)-1)^2]/[1-(tan(x/2))^2]
=4tan(x/2)/[1-(tan(x/2))^2]
=4tan(x/2)/[1-(tan(x/2))^2]=2{tan(x/2)+tan(x/2)/[1-(tan(x/2))×(tan(x/2))]}
=2tanx
(3) tan(x/2+π/4)+tan(x/2-π/4)
=[tan(x/2)+tan(π/4)]/[1-tan(x/2)tan(π/4)]+[tan(x/2)-tan(π/4)]/[1+tan(x/2)tan(π/4)]
=[tan(x/2)+1]/[1-tan(x/2)]+[tan(x/2)-1]/[1+tan(x/2)]
=[(tan(x/2)+1)^2-(tan(x/2)-1)^2]/[1-(tan(x/2))^2]
=4tan(x/2)/[1-(tan(x/2))^2]
=4tan(x/2)/[1-(tan(x/2))^2]=2{tan(x/2)+tan(x/2)/[1-(tan(x/2))×(tan(x/2))]}
=2tanx
展开全部
2)做长方形ABCD (AD>AB)在BC上取一点P使∠APB=a ∠PDC=a/2
则tan a=AB/BP tan a/2=PC/CD=PC/AB AP=AD
∴AB^2+BP^2=AP^2=AD^2=(BP+PC)^2
∴AB^2=2BP×PC+PC^2 同除以(AP×PC)
得 AB/PC=2BP/AB+PC/AB
把tan a=AB/BP tan a/2=PC/CD=PC/AB 代入
1/(tan a/2)=2/(tan a)+ tan a/2
即tan a/2 - 1/(tan a/2)=-2/(tan a)
则tan a=AB/BP tan a/2=PC/CD=PC/AB AP=AD
∴AB^2+BP^2=AP^2=AD^2=(BP+PC)^2
∴AB^2=2BP×PC+PC^2 同除以(AP×PC)
得 AB/PC=2BP/AB+PC/AB
把tan a=AB/BP tan a/2=PC/CD=PC/AB 代入
1/(tan a/2)=2/(tan a)+ tan a/2
即tan a/2 - 1/(tan a/2)=-2/(tan a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(3)tan (x/2+π/4)+tan(x/2-π/4)=2tanx
=[tan(x/2)+tan(π/4)]/[1-tan(x/2)tan(π/4)]+[tan(x/2)-tan(π/4)]/[1+tan(x/2)tan(π/4)]
=[tan(x/2)+1]/[1-tan(x/2)]+[tan(x/2)-1]/[1+tan(x/2)]
=[(tan(x/2)+1)^2-(tan(x/2)-1)^2]/[1-(tan(x/2)^2]
=4tan(x/2)/[1-(tan(x/2)^2]
=4tan(x/2)/[1-(tan(x/2))^2]=2[2tan(x/2)/1-tan(x/2)^2]=2tanx
=[tan(x/2)+tan(π/4)]/[1-tan(x/2)tan(π/4)]+[tan(x/2)-tan(π/4)]/[1+tan(x/2)tan(π/4)]
=[tan(x/2)+1]/[1-tan(x/2)]+[tan(x/2)-1]/[1+tan(x/2)]
=[(tan(x/2)+1)^2-(tan(x/2)-1)^2]/[1-(tan(x/2)^2]
=4tan(x/2)/[1-(tan(x/2)^2]
=4tan(x/2)/[1-(tan(x/2))^2]=2[2tan(x/2)/1-tan(x/2)^2]=2tanx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询