
初一数学第十一章图形的全等测试卷中的一道题
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D在AM上,且DE=AE,PB分别与线段CF,AF相交于P,M。若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量...
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D在AM上,且DE=AE,PB分别与线段CF,AF相交于P,M。若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由。
展开
3个回答
展开全部
结论:∠F=∠MCD
证明:因为AF平分∠BAC,所以∠CAE=∠BAC
因为BC⊥AF,所以∠CEA=∠BEA=90°
又AE=AE,所以△ACE≌△ABE(A.S.A)
所以CE=BE
CE=CE,∠CEA=∠CED=90°,AE=DE
所以△CEA≌△CED(S.A.S)
所以∠CAE=∠CDE
因为BC⊥AF,所以∠CEM=∠BEM=90°
又EM=EM,所以△CEM≌△BEM(S.A.S)
所以∠CME=∠BME
又∠PMF=∠BME(对顶角相等)所以∠CME=∠PMF
因为∠BAC=2∠MPC,所以∠CAE=∠MPC
又∠CAE=∠CDE,所以∠MPC=∠CDE
∠MPC=∠PMF+∠F(三角形的一个外角等于和它不相邻的两个内角之和)
∠CDE=∠CME+∠MCD
因为∠MPC=∠CDE,∠CME=∠PMF
所以∠F=∠MCD
证明:因为AF平分∠BAC,所以∠CAE=∠BAC
因为BC⊥AF,所以∠CEA=∠BEA=90°
又AE=AE,所以△ACE≌△ABE(A.S.A)
所以CE=BE
CE=CE,∠CEA=∠CED=90°,AE=DE
所以△CEA≌△CED(S.A.S)
所以∠CAE=∠CDE
因为BC⊥AF,所以∠CEM=∠BEM=90°
又EM=EM,所以△CEM≌△BEM(S.A.S)
所以∠CME=∠BME
又∠PMF=∠BME(对顶角相等)所以∠CME=∠PMF
因为∠BAC=2∠MPC,所以∠CAE=∠MPC
又∠CAE=∠CDE,所以∠MPC=∠CDE
∠MPC=∠PMF+∠F(三角形的一个外角等于和它不相邻的两个内角之和)
∠CDE=∠CME+∠MCD
因为∠MPC=∠CDE,∠CME=∠PMF
所以∠F=∠MCD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询