一道高中数列题 数列{n(n+1)(n+2)(n+3)}的前n项和为 请写出具体过程谢谢!
3个回答
展开全部
舍予9217错了哈,
a(n)=(n+3)!/(n-1)!
而不是a(n)=(n+3)! - (n-1)!
显然, a(1)=4! 不等于 4!- 0!=4!-1
-----
a(n)= n(n+1)(n+2)(n+3) = (1/5)[n(n+1)(n+2)(n+3)(n+4) - (n-1)n(n+1)(n+2)(n+3) ]
a(n-1)=(1/5) [ (n-1)n(n+1)(n+2)(n+3) - (n-2)(n-1)n(n+1)(n+2)]
...
a(2) = (1/5) [2*3*4*5*6 - 1*2*3*4*5]
a(1) = (1/5) [ 1*2*3*4*5 - 0]
s(n)=a(1)+a(2)+...+a(n)=(1/5) [n(n+1)(n+2)(n+3)(n+4) - 0] = n(n+1)(n+2)(n+3)(n+4)/5
a(n)=(n+3)!/(n-1)!
而不是a(n)=(n+3)! - (n-1)!
显然, a(1)=4! 不等于 4!- 0!=4!-1
-----
a(n)= n(n+1)(n+2)(n+3) = (1/5)[n(n+1)(n+2)(n+3)(n+4) - (n-1)n(n+1)(n+2)(n+3) ]
a(n-1)=(1/5) [ (n-1)n(n+1)(n+2)(n+3) - (n-2)(n-1)n(n+1)(n+2)]
...
a(2) = (1/5) [2*3*4*5*6 - 1*2*3*4*5]
a(1) = (1/5) [ 1*2*3*4*5 - 0]
s(n)=a(1)+a(2)+...+a(n)=(1/5) [n(n+1)(n+2)(n+3)(n+4) - 0] = n(n+1)(n+2)(n+3)(n+4)/5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=(n+3)!-(n-1)!
a(n-1)=(n+2)!-(n-2)!
a(n-2)=(n+1)!-(n-3)!
~~~~~~~~~~~
a4=7!-3!
a3=6!-2!
a2=5!-1!
a1=4!
将上式两边同时相加得
sn=(4!+5!+6!+~~+(n+2)!)-(1!+2!+3!+~~+(n-2)!)
sn=(n+2)!+(n+1)!+n!-1!-2!-3!
a(n-1)=(n+2)!-(n-2)!
a(n-2)=(n+1)!-(n-3)!
~~~~~~~~~~~
a4=7!-3!
a3=6!-2!
a2=5!-1!
a1=4!
将上式两边同时相加得
sn=(4!+5!+6!+~~+(n+2)!)-(1!+2!+3!+~~+(n-2)!)
sn=(n+2)!+(n+1)!+n!-1!-2!-3!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询