2sin50+cos10(1+√3*tan10)/根号下1+cos10 详细步骤
3个回答
展开全部
[2sin50°+cos10°(1+√3*tan10°)]/根号下(1+cos10°)
=[2sin50°+cos10°+√3sin10°]/√(1+sin80°)
=[2sin50°+2sin(10°+30°)]/√(sin40°+cos40°)^2
=2(sin40°+cos40°)/(sin40°+cos40°)
=2
=[2sin50°+cos10°+√3sin10°]/√(1+sin80°)
=[2sin50°+2sin(10°+30°)]/√(sin40°+cos40°)^2
=2(sin40°+cos40°)/(sin40°+cos40°)
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=[2sin50+2(sin10cos30+cos10sin30)] / √[1+2(cos5)^2-1]
=[2sin50+2sin40] / √2*cos5
=[2sin40+2cos40] / √2*cos5
=[2√2*sin(40+45)] / √2*cos5
=[2√2*sin85] / √2*cos5
=2√2*cos5 / √2*cos5
=2
=[2sin50+2sin40] / √2*cos5
=[2sin40+2cos40] / √2*cos5
=[2√2*sin(40+45)] / √2*cos5
=[2√2*sin85] / √2*cos5
=2√2*cos5 / √2*cos5
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询