考研数二线性代数哪些内容不考?

最好是具体一点的章节,谢谢!... 最好是具体一点的章节,谢谢! 展开
 我来答
yuyaoxian1996
2015-07-28 · TA获得超过3.4万个赞
知道大有可为答主
回答量:2730
采纳率:81%
帮助的人:640万
展开全部
根据数学二考试大纲,线性代数的部分几乎全部涉及,没有太多不考的内容,因此线代部分应全面复习。
线性代数部分考试大纲如下:
行列式
考试内容:行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
矩阵
考试内容
:矩阵的概念 矩阵的线性运算矩阵的乘法方阵的幂 方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.
向量
考试内容:向量的概念 向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积线性无关向量组的正交规范化方法
考试要求
1.理解n维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系
5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
线性方程组
考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组的解的结构及通解的概念.
5.会用初等行变换求解线性方程组.
矩阵的特征值和特征向量
考试内容:矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.
3.理解实对称矩阵的特征值和特征向量的性质.
二次型
考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.
艾羽ts
2011-05-29 · TA获得超过233个赞
知道答主
回答量:91
采纳率:0%
帮助的人:60.8万
展开全部
数二 线性代数 部分 非12年的大纲 ,但每年数学大纲变化不大,所以你可以按照此大纲复习,12年大纲出来后再对照一下。

一 、行列式
考试内容:行列式的概念和基本性质 行列式按行(列)展开定理
考试要求: 1.了解行列式的概念,掌握行列式的性质
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵
考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 
考试要求:
1. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2. 掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3. 理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4. 了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

三、向量
考试内容:向量的概念 向量的线性组合和线性表示 相关与线性无关 向量组的线性相关和线性无关 向量组的极大线性无关组 等价的向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法
考试要求
1. 理解n维向量、向量的线性组合与线性表示的概念.
2. 理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法
1. 理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
2. 理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩的关系
3. 了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四、线性方程组
考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有一非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解
考试要求;
1. 会用克莱姆法则
2. 理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件
3. 理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法
4. 理解非齐次线性方程组解的结构及通解的概念.
5. 会用初等行变换求解线性方程组.
五、矩阵的特征值和特征向量
考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵
考试要求
1. 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2. 理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.会将矩阵化为相似对角矩阵.
3. 掌握实对称矩阵的特征值和特征向量的性质.

六、二次型
考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1. 了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念
2. 了解二次型秩的概念,了解二次型的标准型、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形
3. 理解正定二次型、正定矩阵的概念,并掌握其判别法
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
大G小j
2011-05-29 · TA获得超过1128个赞
知道小有建树答主
回答量:261
采纳率:100%
帮助的人:229万
展开全部
按同济版的线性代数来看,第六章就不用看了。。还有第四章的第五节向量空间好像数二考纲上也没有写。不过向量空间就那两页书,有空就看了吧。
剩下都看吧。其实就线性代数而言,数二和数一要求差不多吧。你们数二的都不用复习概率论,还不用看级数,线代就那么薄一本书,就甭想着偷懒了,呵呵,好好看吧
建议你找分考纲看看,或者买本复习全书,推荐李永乐的,李永乐的线代是强项,把上面有的都弄明白就够了,复习全书上面没有的考试肯定不会出现的。
好好复习吧 加油
更多追问追答
追问
看来你也是考研的啊,呵呵,一起加油!再问一下哈,那第六章是什么啊,向量吗?
追答
同济五版线性代数的第六章是 线性空间和线性变换。
向量在第四章,一定得看啦(除了第五节 向量空间)。呵呵,我考数一,战友加油!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式