如图,等边三角形ABC中,P是BC上任意一点,线段AP的垂直平分线分别交AB、AC于点M、N,说明BP.PC=BM.CN。...

如图,等边三角形ABC中,P是BC上任意一点,线段AP的垂直平分线分别交AB、AC于点M、N,说明BP.PC=BM.CN。(提示:连接MP、NP)... 如图,等边三角形ABC中,P是BC上任意一点,线段AP的垂直平分线分别交AB、AC于点M、N,说明BP.PC=BM.CN。(提示:连接MP、NP) 展开
WY070135
2011-05-30 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2444
采纳率:100%
帮助的人:1730万
展开全部
证明:
连接MP、NP
∵MN垂直平分AP
∴AM=MP,AN=NP
又MN=MN
∴△AMN≌△PMN(SSS)
∴∠MPN=∠BAC=60°
易知∠CPN=∠BMP
又∠B=∠C=60°
∴△MPB∽△PNC
∴BP/NC=BM/PC
即BP•PC=BM•NC
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式