矩阵可对角化,那特征向量一定可对角化吗?
1个回答
展开全部
相似的矩阵必有相同的特征值,但不一定有相同的特征向量。
如果A相似B,则存在非奇异矩阵是P,有P^(-1)*A*P=B。
det(xI-B)=det(xI-P^(-1)*A*P)=det(P^(-1))=det(xI-A*)det*P)=det(xI-A)。
即B的特征多项式与A的特征多项式相同,故有相同的特征值。如果A的特征向量是a的,则B的特征向量就是Pa,设x是相应的特征向量,故Ax=ax,于是:BPx=PAP^(-1)Pa=PAx=aPx。
若矩阵可对角化,则可按下列步骤来实现:
1、 求出全部的特征值。
2、对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询