为什么要选择奇延拓和偶延拓呢?

 我来答
百度网友ba80cd1
2023-07-03 · TA获得超过5527个赞
知道小有建树答主
回答量:95
采纳率:100%
帮助的人:4.8万
展开全部

一般地,在解题时,用奇延拓和偶延拓都是可以的。

但是在有一类题目中,即先让你将f(x)化成傅里叶级数,然后再利用级数求某一具体的级数的值,这个时候,就必须要采用合适的方法,我们一般是先用两种方法计算,然后再比较得出的傅里叶级数和所求级数,从而选择用奇延拓还是偶延拓。

法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式