求1道概率论习题的答案详解 题目在补充中
设随机变量X1,X2,....,Xn相互独立,且都在区间(0,1)上服从均匀分布,Z=max(X1,X2,...,Xn),求E(Z),D(Z)。答案为n/(n+1),n/...
设随机变量X1,X2,....,Xn相互独立,且都在区间(0,1)上服从均匀分布,Z=max(X1,X2,...,Xn), 求E(Z),D(Z) 。答案为n/(n+1),n/( (n+2) ×(n+1)^2) 求详解
展开
1个回答
展开全部
z>=1时,P{Z<=z}=1,
z<0时,P{Z<=z}=0,
z∈[0,1)时,P{Z<=z}=P{max(X1,X2,...,Xn)<=z}=P{X1<=z∩X2<=z……∩Xn<=z}
=P{X1<=z}P(X2<=z}……P{Xn<=z} ------------ (因为X1,X2,....,Xn相互独立)
=[Fx(z)]^n=z^n 1, z>=1
故Z的分布函数为Fz(z)= z^n, z∈[0,1)
0, z<0
概率密度为fz(z)=nz^(n-1), z∈[0,1)
0, 其他
EZ=∫[0->1] z*fz(z)dz=∫[0->1] nz^ndz=[n/(n+1)]z^(n+1) | [0->1] = n/(n+1)
E(Z^2)=∫[0->1] z*z*fz(z)dz=[n/(n+2)]z^(n+2) | [0->1] = n/(n+2)
DZ=E(Z^2)-(EZ)^2= n/(n+2)-[n/(n+1)]^2=n/( (n+2) ×(n+1)^2)
z<0时,P{Z<=z}=0,
z∈[0,1)时,P{Z<=z}=P{max(X1,X2,...,Xn)<=z}=P{X1<=z∩X2<=z……∩Xn<=z}
=P{X1<=z}P(X2<=z}……P{Xn<=z} ------------ (因为X1,X2,....,Xn相互独立)
=[Fx(z)]^n=z^n 1, z>=1
故Z的分布函数为Fz(z)= z^n, z∈[0,1)
0, z<0
概率密度为fz(z)=nz^(n-1), z∈[0,1)
0, 其他
EZ=∫[0->1] z*fz(z)dz=∫[0->1] nz^ndz=[n/(n+1)]z^(n+1) | [0->1] = n/(n+1)
E(Z^2)=∫[0->1] z*z*fz(z)dz=[n/(n+2)]z^(n+2) | [0->1] = n/(n+2)
DZ=E(Z^2)-(EZ)^2= n/(n+2)-[n/(n+1)]^2=n/( (n+2) ×(n+1)^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询