判断某函数在一点偏导存在的条件是什么,对X,Y偏导都存在?

帐号已注销
2021-05-24 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:163万
展开全部

利用定义求函数值的变化量与自变量(x或y)的变化量得比值在自变量的变化量(x或y)趋于0时的极限,若极限值存在,则相应的偏导存在;否则,相应的偏导不存在。

偏导如果从图像上来说呢,就是这个点在沿某个方向上的变化趋势(也就是斜率啦,跟平面上对x求导是一个意思,对x求偏导,就是你在这个点做一个平行于xoz平面的面去截函数,看他在这个点上的斜率)。

x方向的偏导

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
我和你天下第一好fU
高能答主

2021-06-15 · 世界很大,慢慢探索
知道小有建树答主
回答量:736
采纳率:100%
帮助的人:13.6万
展开全部

利用定义求函数值的变化量与自变量(x或y)的变化量得比值在自变量的变化量(x或y)趋于0时的极限,若极限值存在,则相应的偏导存在;否则,相应的偏导不存在。

偏导如果从图像上来说呢,就是这个点在沿某个方向上的变化趋势(也就是斜率啦,跟平面上对x求导是一个意思,对x求偏导,就是你在这个点做一个平行于xoz平面的面去截函数,看他在这个点上的斜率)。

偏导数的几何意义:

偏导数表示固定面上一点的切线斜率。

偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

以上内容参考百度百科——偏导数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-05-31
展开全部
利用定义。
求函数值的变化量与自变量(x或y)的变化量得比值在自变量的变化量(x或y)趋于0时的极限。
若极限值存在,则相应的偏导存在;否则,相应的偏导不存在。
更多追问追答
追问
是求某一偏导的极限么
追答
不太准确,等一下,我发个图吧!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友2511c9e04
2011-05-31 · TA获得超过4101个赞
知道大有可为答主
回答量:2502
采纳率:54%
帮助的人:1632万
展开全部
是的,如果对X,Y偏导存在,那么对任意方向的偏导都存在
追问
就是求xy的偏导,再代入那个点,有值就行了么,说明偏导存在?
追答
一般可求偏导就说明偏导存在了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友3e192bf5770
2020-03-30 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:29%
帮助的人:676万
展开全部
偏导函数的定义为:如果z=f(x,y)在区域d内的每一点(x,y)处对x的偏导数都存在,那么这个偏导数就是x,y的函数,称它为函数z=f(x,y)对自变量x的偏导函数;同理对y的偏导函数。
所以要注意的是偏导函数不仅仅是在一点可偏导,而且是在某一区域的d上都可偏导,如果z=f(x,y)在p(x,y)处得偏导存在,点p必定属于区域d,即在区域d内,因此我们可以很自然的认为p点的某领域属于该区域d,所以偏导函数在该点的某领域内也必然存在。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式