级数的敛散性判别法
1个回答
展开全部
级数的敛散性判别法如下:
1、先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;如果趋于零,则考虑其它方法。
2、再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,用比值判别法或根值判别法进行判别。
3、再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。
求幂级数的收敛半径、收敛区间和收敛域方法如下:
1、若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域。
2、对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径。
3、求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和。
4、先求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询