急求解一道高数证明题:
设f(x)在[a,b]上连续,在(a,b)内可导,且0<a<b,试证存在ξ,η∈(a,b),使得f'(ξ)=(a+b)/(2η)*f'(η)成立。数学爱好的朋友们恳请你的...
设f(x)在[a,b]上连续,在(a,b)内可导,且0<a<b,试证存在ξ,η ∈(a,b),使得f'(ξ)=(a+b)/(2η )*f'(η )成立。 数学爱好的朋友们恳请你的帮助,在此先说声谢谢啦!
展开
展开全部
对f(x)在[a,b]上用拉格朗日中值定理,则至少存在一点ξ∈(a,b),使得f'(ξ)=[f(b)-f(a)]/(b-a)。
对f(x),x^2在[a,b]上用柯西中值定理,则至少存在一点η∈(a,b),使得[f(b)-f(a)]/(b²-a²)=f'(η)/(2η),所以[f(b)-f(a)]/(b-a)=(b+a)f'(η)/(2η)。
两个式子联立,得f'(ξ)=(a+b)/(2η )*f'(η )
对f(x),x^2在[a,b]上用柯西中值定理,则至少存在一点η∈(a,b),使得[f(b)-f(a)]/(b²-a²)=f'(η)/(2η),所以[f(b)-f(a)]/(b-a)=(b+a)f'(η)/(2η)。
两个式子联立,得f'(ξ)=(a+b)/(2η )*f'(η )
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询