高考数学向量问题
已知三角形OFQ的面积为S,且向量OP·FQ=1,若1/2<S<根3/2,则向量OF,FQ的取值范围...
已知三角形OFQ的面积为S,且向量OP·FQ=1,若1/2<S<根3/2,则向量OF,FQ的取值范围
展开
展开全部
已知三角形OFQ的面积为S,且向量OF•FQ=1,若1/2<S<√3/2,求向量OF与FQ夹角的取值范围
【解】设向量OF与FQ夹角为θ,
向量OF•FQ=1,则|OF||FQ|cosθ=1, |OF||FQ|=1/ cosθ,
三角形OFQ的面积为S, S=1/2|OF||FQ|sinθ
所以S=1/2•1/ cosθ•sinθ=1/2•tanθ,
因为1/2<S<√3/2,
所以1/2<1/2•tanθ<√3/2,
1<tanθ<√3,
∴π/4<θ<π/3.
【解】设向量OF与FQ夹角为θ,
向量OF•FQ=1,则|OF||FQ|cosθ=1, |OF||FQ|=1/ cosθ,
三角形OFQ的面积为S, S=1/2|OF||FQ|sinθ
所以S=1/2•1/ cosθ•sinθ=1/2•tanθ,
因为1/2<S<√3/2,
所以1/2<1/2•tanθ<√3/2,
1<tanθ<√3,
∴π/4<θ<π/3.
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询