
在2到99之间选两个整数,告诉A两数之和,告诉B两数之积.
A对B说:"虽然我不知道那两个数字,可是我能肯定你也不知道."B说:"我原来确实不知道,可是你这么一说,现在我知道了."A于是说:"既然你这么说,那我也知道了,"问是哪两...
A对B说:"虽然我不知道那两个数字,可是我能肯定你也不知道." B说:" 我原来确实不知道,可是你这么一说,现在我知道了." A于是说:" 既然你这么说,那我也知道了," 问是哪两个数字?
你回答说的"由A的第一句话就可以推得,两数和必然小于55"
为什么a+b必定小于55? 不对啊! 那如果a=55, b=2,s=57, m=110=55*2=5*22 不唯一啊,B怎么可能只知道积110就可以猜出来是a=55, b=2还是a=5, b=22呢?
我推论过最小的一对是a=2,b=9 完全符合题目条件论证!
1) . A 知道 s=11 不能确定a,b 因为s=11 = 2+9 = 3+8 = 4+7 = 5+6 ;B在知道m=18 的情况 不能确定 a,b因为m=18 =3*6 = 2*9 所以A对B说:"虽然我不知道那两个数字,可是我能肯定你也不知道."
2) B 本来不能确定 a,b, ...........字数不够打了... 展开
你回答说的"由A的第一句话就可以推得,两数和必然小于55"
为什么a+b必定小于55? 不对啊! 那如果a=55, b=2,s=57, m=110=55*2=5*22 不唯一啊,B怎么可能只知道积110就可以猜出来是a=55, b=2还是a=5, b=22呢?
我推论过最小的一对是a=2,b=9 完全符合题目条件论证!
1) . A 知道 s=11 不能确定a,b 因为s=11 = 2+9 = 3+8 = 4+7 = 5+6 ;B在知道m=18 的情况 不能确定 a,b因为m=18 =3*6 = 2*9 所以A对B说:"虽然我不知道那两个数字,可是我能肯定你也不知道."
2) B 本来不能确定 a,b, ...........字数不够打了... 展开
4个回答
展开全部
方便描述,改写如下:有2到99间两数a、b,A知道和s,B知道积m,然后是后面的对话,略
由A的第一句话就可以推得,两数和必然小于55
原因:如果s=a+b>=55,则s一定可以写为s=c+d,其中53<=c<=97,是素数,2<=d<=99。
这样,假如恰好a取c、b取d,那么m=c*d=a*b是一个可唯一乘积分解的数,也就是说B有可能只知道积就可以猜出来。
那么A说你一定猜不出就不准确了,所以s<55
由A的第一句话还可以推得,这两个数不能写为两个素数的积。因此,根据哥德巴赫猜想“每一个大于或等于6的偶数都可表示成两个奇素数之和”,推得至少在2~200范围内,s不能是偶数
所以s的取值范围目前可以确定为[5,54]间的奇数,还可以进一步缩小范围。对奇素数p,3<=p<=53,p+2是s肯定取不到的数,因为如果取到了,存在2+p的分解使它们的积唯一。这样s可能的取值范围就是{11,17,23,27,29,35,37,41,47,51,53}
s是奇数,说明a,b必然一个为奇一个为偶(不妨a奇b偶)。因此m=a*b为偶数
再分析B的第一句话。因为仅仅上面的条件就可以在知道m的条件下,而推出a,b。所以m=a*b的奇偶分解必然是唯一的。这说明奇数a必然是素数,b=2^n
再看A的的二句话。同样,仅仅上面的条件,就能确定s,说明s形如奇素数加一个2^n的偶数的分解也是唯一的。
根据上面的几条判据,对{11,17,23,27,29,35,37,41,47,51,53}进行筛选,同时注意s的a+b分解唯一性,可以很快得到结果
例如:11=4+7=8+3,不唯一
23=16+7=4+19,不唯一
...............
最终得到s=17,a=13,b=4,m=52
由A的第一句话就可以推得,两数和必然小于55
原因:如果s=a+b>=55,则s一定可以写为s=c+d,其中53<=c<=97,是素数,2<=d<=99。
这样,假如恰好a取c、b取d,那么m=c*d=a*b是一个可唯一乘积分解的数,也就是说B有可能只知道积就可以猜出来。
那么A说你一定猜不出就不准确了,所以s<55
由A的第一句话还可以推得,这两个数不能写为两个素数的积。因此,根据哥德巴赫猜想“每一个大于或等于6的偶数都可表示成两个奇素数之和”,推得至少在2~200范围内,s不能是偶数
所以s的取值范围目前可以确定为[5,54]间的奇数,还可以进一步缩小范围。对奇素数p,3<=p<=53,p+2是s肯定取不到的数,因为如果取到了,存在2+p的分解使它们的积唯一。这样s可能的取值范围就是{11,17,23,27,29,35,37,41,47,51,53}
s是奇数,说明a,b必然一个为奇一个为偶(不妨a奇b偶)。因此m=a*b为偶数
再分析B的第一句话。因为仅仅上面的条件就可以在知道m的条件下,而推出a,b。所以m=a*b的奇偶分解必然是唯一的。这说明奇数a必然是素数,b=2^n
再看A的的二句话。同样,仅仅上面的条件,就能确定s,说明s形如奇素数加一个2^n的偶数的分解也是唯一的。
根据上面的几条判据,对{11,17,23,27,29,35,37,41,47,51,53}进行筛选,同时注意s的a+b分解唯一性,可以很快得到结果
例如:11=4+7=8+3,不唯一
23=16+7=4+19,不唯一
...............
最终得到s=17,a=13,b=4,m=52
展开全部
方便描述,改写如下:有2到99间两数a、b,A知道和s,B知道积m,然后是后面的对话,略
由A的第一句话就可以推得,两数和必然小于55
原因:如果s=a+b>=55,则s一定可以写为s=c+d,其中53<=c<=97,是素数,2<=d<=99。
这样,假如恰好a取c、b取d,那么m=c*d=a*b是一个可唯一乘积分解的数,也就是说B有可能只知道积就可以猜出来。
那么A说你一定猜不出就不准确了,所以s<55
由A的第一句话还可以推得,这两个数不能写为两个素数的积。因此,根据哥德巴赫猜想“每一个大于或等于6的偶数都可表示成两个奇素数之和”,推得至少在2~200范围内,s不能是偶数
所以s的取值范围目前可以确定为[5,54]间的奇数,还可以进一步缩小范围。对奇素数p,3<=p<=53,p+2是s肯定取不到的数,因为如果取到了,存在2+p的分解使它们的积唯一。这样s可能的取值范围就是{11,17,23,27,29,35,37,41,47,51,53}
s是奇数,说明a,b必然一个为奇一个为偶(不妨a奇b偶)。因此m=a*b为偶数
再分析B的第一句话。因为仅仅上面的条件就可以在知道m的条件下,而推出a,b。所以m=a*b的奇偶分解必然是唯一的。这说明奇数a必然是素数,b=2^n
再看A的的二句话。同样,仅仅上面的条件,就能确定s,说明s形如奇素数加一个2^n的偶数的分解也是唯一的。
根据上面的几条判据,对{11,17,23,27,29,35,37,41,47,51,53}进行筛选,同时注意s的a+b分解唯一性,可以很快得到结果
例如:11=4+7=8+3,不唯一
23=16+7=4+19,不唯一
...............
最终得到s=17,a=13,b=4,m=52
由A的第一句话就可以推得,两数和必然小于55
原因:如果s=a+b>=55,则s一定可以写为s=c+d,其中53<=c<=97,是素数,2<=d<=99。
这样,假如恰好a取c、b取d,那么m=c*d=a*b是一个可唯一乘积分解的数,也就是说B有可能只知道积就可以猜出来。
那么A说你一定猜不出就不准确了,所以s<55
由A的第一句话还可以推得,这两个数不能写为两个素数的积。因此,根据哥德巴赫猜想“每一个大于或等于6的偶数都可表示成两个奇素数之和”,推得至少在2~200范围内,s不能是偶数
所以s的取值范围目前可以确定为[5,54]间的奇数,还可以进一步缩小范围。对奇素数p,3<=p<=53,p+2是s肯定取不到的数,因为如果取到了,存在2+p的分解使它们的积唯一。这样s可能的取值范围就是{11,17,23,27,29,35,37,41,47,51,53}
s是奇数,说明a,b必然一个为奇一个为偶(不妨a奇b偶)。因此m=a*b为偶数
再分析B的第一句话。因为仅仅上面的条件就可以在知道m的条件下,而推出a,b。所以m=a*b的奇偶分解必然是唯一的。这说明奇数a必然是素数,b=2^n
再看A的的二句话。同样,仅仅上面的条件,就能确定s,说明s形如奇素数加一个2^n的偶数的分解也是唯一的。
根据上面的几条判据,对{11,17,23,27,29,35,37,41,47,51,53}进行筛选,同时注意s的a+b分解唯一性,可以很快得到结果
例如:11=4+7=8+3,不唯一
23=16+7=4+19,不唯一
...............
最终得到s=17,a=13,b=4,m=52
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
明显的,你的数学小白级。你明显忽略题目条件,都不知道对方的数。你这样相当于用唯一解去代替可能性。比如你说的55和2,和是57。如果你是a,给你的数是57,你就知道这两个数一定是55和2?他还可能是53和4。而53和4的乘积,212是唯一解。你要弄清楚只是知道和,不是这两个数。这就是一定要小于55的原因:一,2是素数;二,大于50的最小素数是53。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
周利波说过。从小学开始,我们的应用题中不是小A小B,就是小红小明。
这么多年过去了,我唯一的问题就是,他们在哪里?混的咋样 。
这么多年过去了,我唯一的问题就是,他们在哪里?混的咋样 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询