二元函数是什么意思,怎么图像
z=x^2+y^2是一个二元函数,它的图像如下:
z=x的图形如下:
两者围成的平面,可以想象出来,就是将z=x^2+y^2的图像,在空间上斜切,切面是z=x。
围成图形的计算:
两张曲面的交线方程应该是由z=x^2+y^2与z=x联立构成的方程组,在这个方程组里消去z后得到的方程,就是过交线且母线平行于z轴的柱面。
在上述方程组中消去z得到的是圆柱面(x-1/2)^2+y^2=1/4,它在xoy面上的投影曲线是以(1/2, 0)为圆心、半径为1/2的圆周。
扩展资料:
二元函数具有以下性质:
1、连续性
f为定义在点集D上的二元函数.P0为D中的一点.对于任意给定的正数ε,总存在相应的正数δ,只要P在P0的δ临域和D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D在点P0处连续.
若f在D上任何点都连续,则称f是D上的连续函数.
2、一致连续性
对于任意给定的ε>0,存在某一个正数δ,对于D上任意一点P0,只要P在P0的δ邻域与D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D一致连续.
一致连续比连续的条件要苛刻很多.
3、可微性
设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:
△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微.
参考资料来源:百度百科-二元函数
2024-04-02 广告