函数f(x)=sin^2(2x-派/4)的最小正周期是什么?
3个回答
展开全部
解:f(x)=[sin(2x-π/4)]^2
=[1-cos(4x-π/2)]/2
=1/2-(1/2)sin4x
T=(2π)/w=2π/4=π/2
所以函数f(x)=[sin(2x-π/4)]^2的最小正周期是 π/2
=[1-cos(4x-π/2)]/2
=1/2-(1/2)sin4x
T=(2π)/w=2π/4=π/2
所以函数f(x)=[sin(2x-π/4)]^2的最小正周期是 π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=sin^2(2x-π/4)=(1/2)*[1-2cos(4x-π/2)]
=1/2-(1/2)*cos(π/2-4x)
=(1/2)-(1/2)sin4x
最小正周期=2π/4=π/2
=1/2-(1/2)*cos(π/2-4x)
=(1/2)-(1/2)sin4x
最小正周期=2π/4=π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-05-31 · 知道合伙人教育行家
关注
展开全部
π/4
追问
答案是派/2 怎么做?求过程
追答
对,是π/2
f(x)=sin^2(2x-派/4)周期等同于 f(x)=sin^2(2x)=(1-cos4x)/2
所以函数的最小正周期是2π/4=π/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询