证明向量组线性无关

设A是n阶方针,若存在n维列向量a和正整数k,使得A^k*a=0,A^(k-1)*a!=0,证明:向量组a,A*a,A^2*a,…,A^(k-1)*a线性无关... 设A是n阶方针,若存在n维列向量a和正整数k,使得A^k*a=0,A^(k-1)*a!=0,证明:向量组a,A*a,A^2*a,…,A^(k-1)*a线性无关 展开
 我来答
robin_2006
2011-06-01 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8224万
展开全部
设x1a+x2Aa+x3A^2a+....+xkA^(k-1)a=0。上式左乘以A^(k-1),得x1A^(k-1)a=0,所以x1=0。左乘以A^(k-2),得x2=0。继续做下去,所有的系数都是0。所以向量组线性无关
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式