二次函数判别式为何小于0?

 我来答
颜代7W
高粉答主

2023-08-09 · 每个回答都超有意思的
知道小有建树答主
回答量:505
采纳率:100%
帮助的人:12.9万
展开全部

解:对于一个二次函数ax^2+bx+c(其中a≠0),若ax^2+bx+c>0恒成立。

即表示y=ax^2+bx+c的图像在x轴上方,与x轴没有交点。图像如下。

那么说明y=ax^2+bx+c没有实数根,

所以对于y=ax^2+bx+c,判别式△=b^2-4ac<0。

扩展资料:

二次函数性质

对于二次函数y=ax^2+bx+c(其中a≠0)。有如下性质。

1、二次函数的图像是抛物线。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线x=-b/(2a)。

2、二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。

3、抛物线与x轴交点个数

(1)当△=b^2-4ac>0时,抛物线与x轴有2个交点。

(2)当△=b^2-4ac=1时,抛物线与x轴有1个交点。

(3) 当△=b^2-4ac<0时,抛物线与x轴没有交点。

参考资料来源:百度百科-二次函数

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式