已知向量a,b满足:|a|=1,|b|=2,|a-b|=√7。(1)求|a-2b| (2)若(a+2b)⊥ (ka-b),求实数k的值
展开全部
解:∣a - b∣² = √(a - b)²
( √7 )² = a² - 2a•b + b²
7 = ∣a∣² - 2a•b +∣b∣²
7 = 1² - 2a•b + 2²
2a•b = -2
a•b = -1
(1) |a-2b| = √(a - 2b)²
= √(a² - 4a•b + 4b²)
= √(∣a∣² - 4a•b + 4∣b∣²)
= √(1² - 4*(-1) + 4*2²)
= √21
(2) 若(a+2b)⊥ (ka-b),
则(a+2b)• (ka-b) = 0
ka² + (2k - 1)a•b - 2b² = 0
k∣a∣² + (2k - 1)a•b - 2∣b∣² = 0
k*1² + (2k - 1)*(-1) - 2*(2)² = 0
k - 2k+ 1 - 8 = 0
k = -7
( √7 )² = a² - 2a•b + b²
7 = ∣a∣² - 2a•b +∣b∣²
7 = 1² - 2a•b + 2²
2a•b = -2
a•b = -1
(1) |a-2b| = √(a - 2b)²
= √(a² - 4a•b + 4b²)
= √(∣a∣² - 4a•b + 4∣b∣²)
= √(1² - 4*(-1) + 4*2²)
= √21
(2) 若(a+2b)⊥ (ka-b),
则(a+2b)• (ka-b) = 0
ka² + (2k - 1)a•b - 2b² = 0
k∣a∣² + (2k - 1)a•b - 2∣b∣² = 0
k*1² + (2k - 1)*(-1) - 2*(2)² = 0
k - 2k+ 1 - 8 = 0
k = -7
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
|a|=1,|b|=2, a^2=1 b^2=4
Ia-b|=√7 a^2-2ab+b^2=7 1-2ab+4=7 ab=-1
(1) |a-2b|=√(a^2-4ab+4b^2)=√(1+4+4*4)=√21
(2)(a+2b)⊥ (ka-b),
则(a+2b)*(ka-b)=0
ka^2+2kab-ab-2b^2=0
k+2k*(-1)-(-1)-2*4=0
-k+1-8=0
k=-7
Ia-b|=√7 a^2-2ab+b^2=7 1-2ab+4=7 ab=-1
(1) |a-2b|=√(a^2-4ab+4b^2)=√(1+4+4*4)=√21
(2)(a+2b)⊥ (ka-b),
则(a+2b)*(ka-b)=0
ka^2+2kab-ab-2b^2=0
k+2k*(-1)-(-1)-2*4=0
-k+1-8=0
k=-7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)a2=1;b2=4;a2+b2-2ab=7;推出-2ab=2;a2+4b2-4ab=21;所以
|a-2b| =√21.
(2)ka2-ab+2kab-2b2=0;即k+1-2k-8=0推出k=-7
|a-2b| =√21.
(2)ka2-ab+2kab-2b2=0;即k+1-2k-8=0推出k=-7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询