已知函数f(x)=(1+cotx)sin²x+msin(x+π/4)× sin(x-π/4)
(1)当m=0时,求f(x)在区间[π/8,3π/4]上的取值范围(2)当tanα=2时,f(α)=3/5,求m的值...
(1)当m=0时,求f(x)在区间[ π/8 , 3π/4 ]上的取值范围
(2)当tanα=2时,f(α)=3/5,求m的值 展开
(2)当tanα=2时,f(α)=3/5,求m的值 展开
展开全部
(1) m=0时
f(x)=sin^2x+sinxcosx
=(1/2)[1-cos2x+sin2x]
=(√2/2)sin(2x-π/4)+1/2
当2x-π/4=π/2 x=3π/8是f(x)max=(√2+1)/2
而f(π/8)=(√2/2)*0+1/2=1/2 f(3π/4)=(√2/2)sin(5π/4)+1/2=1/2-1/2=0
∴f(x)在区间[ π/8 , 3π/4 ]上的取值范围是[0, (√2+1)/2]
(2) 当tanα=2时, cotα=1/2 sin^2α=1/(1+cot^2α)=4/5 cos^2α=3/5
此时f(α)=3/5
∴3/5=(1+1/2)*(4/5)+m*(1/2)(sin^2α-cos^2α)=6/5+m*(1/2)(4/5-3/5)
∴m/10=3/5-6/5
∴m=-6
f(x)=sin^2x+sinxcosx
=(1/2)[1-cos2x+sin2x]
=(√2/2)sin(2x-π/4)+1/2
当2x-π/4=π/2 x=3π/8是f(x)max=(√2+1)/2
而f(π/8)=(√2/2)*0+1/2=1/2 f(3π/4)=(√2/2)sin(5π/4)+1/2=1/2-1/2=0
∴f(x)在区间[ π/8 , 3π/4 ]上的取值范围是[0, (√2+1)/2]
(2) 当tanα=2时, cotα=1/2 sin^2α=1/(1+cot^2α)=4/5 cos^2α=3/5
此时f(α)=3/5
∴3/5=(1+1/2)*(4/5)+m*(1/2)(sin^2α-cos^2α)=6/5+m*(1/2)(4/5-3/5)
∴m/10=3/5-6/5
∴m=-6
追问
(1/2)[1-cos2x+sin2x]
=(√2/2)sin(2x-π/4)+1/2
请赐教(*^__^*)
追答
(1/2)[1-cos2x+sin2x]
=(1/2)(sin2x-cos2x)+1/2
=(√2/2)[(√2/2)sin2x-(√2/2)cos2x]+1/2
==(√2/2)sin(2x-π/4)+1/2
2011-06-18 · 知道合伙人教育行家
关注
展开全部
(1)当m=0时,
f(x)=(1+cotx)sin²x=sin²x+cosxsinx=(1-cos2x)/2+sin2x/2=(1-cos2x+sin2x)/2
=[1+√2sin(2x-π/4)]/2
f(x)在区间[ π/8 , 3π/4 ]上
x=3π/4时,f(x)有最小值0
当x=3π/8时,f(x)有最大值(1+√2)/2
取值范围是[0,(1+√2)/2
](2)当tanα=2时,f(α)=3/5
则cotα=1/2
sin²α=1-cos²α=1-1/sec²α=1-1/(1+tan²α)=4/5
sin(α+π/4)× sin(α-π/4)=(cos90-cos2α)/2=(-cos2α)/2=(2sin²α-1)/2=3/10
所以
3/5=(1+1/2)4/5+m*3/10
m=-2
f(x)=(1+cotx)sin²x=sin²x+cosxsinx=(1-cos2x)/2+sin2x/2=(1-cos2x+sin2x)/2
=[1+√2sin(2x-π/4)]/2
f(x)在区间[ π/8 , 3π/4 ]上
x=3π/4时,f(x)有最小值0
当x=3π/8时,f(x)有最大值(1+√2)/2
取值范围是[0,(1+√2)/2
](2)当tanα=2时,f(α)=3/5
则cotα=1/2
sin²α=1-cos²α=1-1/sec²α=1-1/(1+tan²α)=4/5
sin(α+π/4)× sin(α-π/4)=(cos90-cos2α)/2=(-cos2α)/2=(2sin²α-1)/2=3/10
所以
3/5=(1+1/2)4/5+m*3/10
m=-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询