计算(x+2)/(x+1)-(x+3)/(x+2)-(x-4)/(x-3)+(x-5)/(x-4)
1个回答
展开全部
(x+2)/(x+1)-(x+3)/(x+2)-(x-4)/(x-3)+(x-5)/(x-4)
=1+1/(x+1)-1-1/(x+2)-1+1/(x-3)+1-1/(x-4)
=1/(x+1)-1/(x+2)+1/(x-3)-1/(x-4)
=1/(x+1)(x+2)-1/(x-3)(x-4)
=[(x^2-7x+12)-(x^2+3x+2)]/(x+1)(x+2)(x-3)(x-4)
=(-10x+10)/(x+1)(x+2)(x-3)(x-4)
=-10(x-1)/(x+1)(x+2)(x-3)(x-4)
=1+1/(x+1)-1-1/(x+2)-1+1/(x-3)+1-1/(x-4)
=1/(x+1)-1/(x+2)+1/(x-3)-1/(x-4)
=1/(x+1)(x+2)-1/(x-3)(x-4)
=[(x^2-7x+12)-(x^2+3x+2)]/(x+1)(x+2)(x-3)(x-4)
=(-10x+10)/(x+1)(x+2)(x-3)(x-4)
=-10(x-1)/(x+1)(x+2)(x-3)(x-4)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询