3个回答
展开全部
法1
过点E作EG//BC交AC于点G
1.由平行得出三角形AEG相似于三角形ADC,又由E为AD中点得出EG/DC=1/2
所以EG/BC=1/4
2.由同样的平行证出三角形EFG相似于三角形BFC,得出FE/FB=EG/BC=1/4
所以EF/BE=1/3
法2(如果目前你只学过全等)
作DG//AF交BE于点G
证明三角形EGD全等于EFA,得出EG=EF
再作GH//BC交AC于点H
证明三角形GBD全等于FGH,得出BG=GF=2EF
所以EF/BE=1/3
过点E作EG//BC交AC于点G
1.由平行得出三角形AEG相似于三角形ADC,又由E为AD中点得出EG/DC=1/2
所以EG/BC=1/4
2.由同样的平行证出三角形EFG相似于三角形BFC,得出FE/FB=EG/BC=1/4
所以EF/BE=1/3
法2(如果目前你只学过全等)
作DG//AF交BE于点G
证明三角形EGD全等于EFA,得出EG=EF
再作GH//BC交AC于点H
证明三角形GBD全等于FGH,得出BG=GF=2EF
所以EF/BE=1/3
展开全部
∵DG是△BCF的中位线
∴DG=(1/2)/BF,DG∥BF
又∵E是AD的中点
∴EF=(1/2)DG
∴EF=(1/4)BF…….(1)
BE=BF-EF=BF-(1/4)BF=(3/4)BF……(2)
(1)式除以(2)式,得
EF=(1/3)BF
∴DG=(1/2)/BF,DG∥BF
又∵E是AD的中点
∴EF=(1/2)DG
∴EF=(1/4)BF…….(1)
BE=BF-EF=BF-(1/4)BF=(3/4)BF……(2)
(1)式除以(2)式,得
EF=(1/3)BF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由E是AD中点,GD平行于AC,容易证明三角形DGE全等于三角形AFE(AAS或ASA)
所以GE=EF
又由DG是三角形BCF的中位线可得BG=GF
于是EF=1/3BE得证。
所以GE=EF
又由DG是三角形BCF的中位线可得BG=GF
于是EF=1/3BE得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询