一道初中数学
如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.(1)试说明四边形...
如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.
(1)试说明四边形AECG是平行四边形;
(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形? 展开
(1)试说明四边形AECG是平行四边形;
(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形? 展开
展开全部
解:(1)由题意,得∠GAH= 12∠DAC,∠ECF= 12∠BCA,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠DAC=∠BCA,
∴∠GAH=∠ECF,
∴AG∥CE,
又∵AE∥CG
∴四边形AECG是平行四边形;
(2)∵四边形AECG是菱形,
∴F、H重合,
∴AC=2BC,在Rt△ABC中,设BC=x,则AC=2x,
在Rt△ABC中AC2=AB2+BC2,
即(2x)2=32+x2,
解得x= 根号3(x=-根号3舍去),
即线段BC的长为 根号3cm..
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠DAC=∠BCA,
∴∠GAH=∠ECF,
∴AG∥CE,
又∵AE∥CG
∴四边形AECG是平行四边形;
(2)∵四边形AECG是菱形,
∴F、H重合,
∴AC=2BC,在Rt△ABC中,设BC=x,则AC=2x,
在Rt△ABC中AC2=AB2+BC2,
即(2x)2=32+x2,
解得x= 根号3(x=-根号3舍去),
即线段BC的长为 根号3cm..
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询