解析几何高考计算有什么技巧吗?
展开全部
解析几何高考的命题趋势:
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右, 占总分值的20%左右。
(2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
① 求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:如2000年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.
以及其他“标准件”类型的基础题。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。
预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的问题.
选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.
请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。
考试大纲这部分的变动就是(1)、简单线性规划由08年的了解提高到理解,(2)、椭圆的参数方程由08年的了解提高到理解。
04----08年,解析几何部分的命题都是“一大两小”——一个解答题两个客观题,多是以平面向量为载体,综合圆锥曲线交汇处为主干,构筑成知识网络型圆锥曲线问题,使平面向量的知识与解析几何的知识得到了很好的整合。集中体现对考生综合知识和应变能力的考查。
考查的重点落在轨迹方程、直线与圆锥曲线的位置关系,往往是通过直线与圆锥曲线方程的联立、消元,借助于韦达定理代人、向量搭桥建立等量关系。考查题型涉及的知识点问题有求曲线方程问题、参数的取值范围问题、最值问题、定值问题、直线过定点问题、对称问题等,所以我们要掌握这些问题的基本解法。
命题特别注意对思维严密性的考查,解题时需要注意考虑以下几个问题:
1、设曲线方程时看清焦点在哪条坐标轴上;注意方程待定形式及参数方程的使用。
2、直线的斜率存在与不存在、斜率为零,相交问题注意“D”的影响等。
3、命题结论给出的方式:搞清题目所给的几个小题是并列关系还是递进关系。如果前后小题各自有强化条件,则为并列关系,前面小题结论后面小题不能用;不过考题经常给出的是递进关系,有(1)、第一问求曲线方程、第二问讨论直线和圆锥曲线的位置关系,(2)第一问求离心率、第二问结合圆锥曲线性质求曲线方程,(3)探索型问题等。解题时要根据不同情况考虑施加不同的解答技巧。
4、题目条件如与向量知识结合,也要注意向量的给出形式:
(1)、直接反映图形位置关系和性质的,如•=0,=( ),λ,以及过三角形“四心”的向量表达式等;
(2)、=λ:如果已知M的坐标,按向量展开;如果未知M的坐标,按定比分点公式代入表示M点坐标。
(3)、若题目条件由多个向量表达式给出,则考虑其图形特征(数形结合)。
5、考虑圆锥曲线的第一定义、第二定义的区别使用,注意圆锥曲线的性质的应用。
6、注意数形结合,特别注意图形反映的平面几何性质。
7、解析几何题的另一个考查的重点就是学生的基本运算能力,所以解析几何考题学生普遍感觉较难对付。为此我们有必要在平常的解题变形的过程中,发现积累一些式子的常用变形技巧,如假分式的分离技巧,对称替代的技巧,构造对称式用韦达定理代入的技巧,构造均值不等式的变形技巧等,以便提升解题速度。
8、平面解析几何与平面向量都具有数与形结合的特征,所以这两者多有结合,在它们的知识点交汇处命题,也是高考命题的一大亮点.直线与圆锥曲线的位置关系问题是常考常新、经久不衰的一个考查重点,另外,圆锥曲线中参数的取值范围问题、最值问题、定值问题、对称问题等综合性问题也是高考的常考题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何问题的难度有所降低,但仍是一个综合性较强的问题,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.
例1已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)若△POM的面积为,求向量与的夹角。
(2)试证明直线PQ恒过一个定点。
高考命题虽说千变万化,但只要认真研究考纲和近三年高考试题以及2010年的模拟试题,找出相应的一些规律,我们就大胆地猜想高考解答题命题的一些思路和趋势,指导我们后面的复习。对待高考,我们应该采取正确的态度,再大胆预测的同时,更要注重基础知识的进一步巩固,多做一些简单的综合练习,提高自己的解题能力.
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右, 占总分值的20%左右。
(2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
① 求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:如2000年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.
以及其他“标准件”类型的基础题。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。
预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的问题.
选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.
请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。
考试大纲这部分的变动就是(1)、简单线性规划由08年的了解提高到理解,(2)、椭圆的参数方程由08年的了解提高到理解。
04----08年,解析几何部分的命题都是“一大两小”——一个解答题两个客观题,多是以平面向量为载体,综合圆锥曲线交汇处为主干,构筑成知识网络型圆锥曲线问题,使平面向量的知识与解析几何的知识得到了很好的整合。集中体现对考生综合知识和应变能力的考查。
考查的重点落在轨迹方程、直线与圆锥曲线的位置关系,往往是通过直线与圆锥曲线方程的联立、消元,借助于韦达定理代人、向量搭桥建立等量关系。考查题型涉及的知识点问题有求曲线方程问题、参数的取值范围问题、最值问题、定值问题、直线过定点问题、对称问题等,所以我们要掌握这些问题的基本解法。
命题特别注意对思维严密性的考查,解题时需要注意考虑以下几个问题:
1、设曲线方程时看清焦点在哪条坐标轴上;注意方程待定形式及参数方程的使用。
2、直线的斜率存在与不存在、斜率为零,相交问题注意“D”的影响等。
3、命题结论给出的方式:搞清题目所给的几个小题是并列关系还是递进关系。如果前后小题各自有强化条件,则为并列关系,前面小题结论后面小题不能用;不过考题经常给出的是递进关系,有(1)、第一问求曲线方程、第二问讨论直线和圆锥曲线的位置关系,(2)第一问求离心率、第二问结合圆锥曲线性质求曲线方程,(3)探索型问题等。解题时要根据不同情况考虑施加不同的解答技巧。
4、题目条件如与向量知识结合,也要注意向量的给出形式:
(1)、直接反映图形位置关系和性质的,如•=0,=( ),λ,以及过三角形“四心”的向量表达式等;
(2)、=λ:如果已知M的坐标,按向量展开;如果未知M的坐标,按定比分点公式代入表示M点坐标。
(3)、若题目条件由多个向量表达式给出,则考虑其图形特征(数形结合)。
5、考虑圆锥曲线的第一定义、第二定义的区别使用,注意圆锥曲线的性质的应用。
6、注意数形结合,特别注意图形反映的平面几何性质。
7、解析几何题的另一个考查的重点就是学生的基本运算能力,所以解析几何考题学生普遍感觉较难对付。为此我们有必要在平常的解题变形的过程中,发现积累一些式子的常用变形技巧,如假分式的分离技巧,对称替代的技巧,构造对称式用韦达定理代入的技巧,构造均值不等式的变形技巧等,以便提升解题速度。
8、平面解析几何与平面向量都具有数与形结合的特征,所以这两者多有结合,在它们的知识点交汇处命题,也是高考命题的一大亮点.直线与圆锥曲线的位置关系问题是常考常新、经久不衰的一个考查重点,另外,圆锥曲线中参数的取值范围问题、最值问题、定值问题、对称问题等综合性问题也是高考的常考题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何问题的难度有所降低,但仍是一个综合性较强的问题,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.
例1已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)若△POM的面积为,求向量与的夹角。
(2)试证明直线PQ恒过一个定点。
高考命题虽说千变万化,但只要认真研究考纲和近三年高考试题以及2010年的模拟试题,找出相应的一些规律,我们就大胆地猜想高考解答题命题的一些思路和趋势,指导我们后面的复习。对待高考,我们应该采取正确的态度,再大胆预测的同时,更要注重基础知识的进一步巩固,多做一些简单的综合练习,提高自己的解题能力.
展开全部
椭圆双曲线什么的题答起来基本套路都一样,关键时刻就是看能不能算下去,能不能算对。基本第一小题都是没问题的,一定要先答好,后面的实在算不出来就先按套路把方程式列出来。想立体几何的分一点尽量拿到,比较简单,后面的数列第一第二小题也较简单,最后一个证明需要用到数学归纳法啥的,老师都不一定能做出来,建议直接放弃啦~加油哦,解析几何的解题套路老师一般会一讲再讲,一定要非常熟悉,再来计算要细心,一错百错,没时间就干脆别算,列出方程后,检查其他的题~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
会的先画图
不会的先设图形解析式,带点算出,通常就直线和圆之间关系靠解析式可以解决
不会的先设图形解析式,带点算出,通常就直线和圆之间关系靠解析式可以解决
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
只要记住一点,第一问总为第二问做铺垫,第二问想不出来要拼命地往第一问的方向靠拢
追问
第一问都是送分。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解析几何没什么技巧可言的,一般就是设点到最后方程联立韦达定理解出来,有毅力算下去就行了,反正我当年能保证90%的题目算得出,10%可能做不出,高考的时候这道题是全对的……
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询