函数可导的充分条件

函数f(x)在点x0处的某个邻域有定义,则极限f(x0+2h)-f(x0+h)/h存在不是函数f(x)在点x0处可导的充分条件的原因如:设函数f(x)在x=a的某个邻域内... 函数f(x)在点x0处的某个邻域有定义,则极限f(x0+2h)-f(x0+h)/h存在不是函数f(x)在点x0处可导的充分条件的原因
如:设函数f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是?
A.lim(x趋近于0) [f(a+2h)-f(a+h)]/h存在 B.lim(x趋近于0) [f(a+h)-f(a-h)]/2h存在
C.lim(x趋近于0) [f(a)-f(a-h)]/h存在 D为D.lim(h趋近于无穷) h[f(a+1/h)-f(a)]
展开
轮看殊O
高粉答主

2019-08-15 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:1012万
展开全部

函数要可导,首先左右导数相等。

其次,要在该点处有定义。

f(x)在x=a处可导的一个充分条件是lim(x趋近于0) [f(a)-f(a-h)]/h存在。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

扩展资料

可导的函数一定连续;不连续的函数一定不可导。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。

如果一个函数在x0处可导,那么它一定在x0处是连续函数

斩月剡月devil
推荐于2017-12-15 · TA获得超过962个赞
知道小有建树答主
回答量:365
采纳率:100%
帮助的人:100万
展开全部
函数要可导,首先左右导数相等,其次,要在该点处有定义。对于f(x0+2h)-f(x0+h)/h 写成
f(x0+2h)-fx0)+f(x0)-f(x0+h) ,由 f(x0+2h)-f(x0+h)/h存在 并不能得出f(x0+2h)-f(x0)/2h 以及

f(x0)-f(x0+h)/-h 存在
那么 对于选择题的选项
A,B都和上面原因相同
C是正确答案
D是因为h趋向于无穷 有两种情况,D能说明左右极限都存在,不过不能说明相等。
因此选C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
那里风景独好
2011-06-05
知道答主
回答量:12
采纳率:0%
帮助的人:0
展开全部
您应该知道函数连续不一定可导 可导不一定连续吧 首先要在该点有意义 然后都是左导数等于右导数 在后都是该点的极限值等于函数值
追问
我知道函数连续不一定可导,但可导必连续,话说,我问的问题涉及到领域的问题,能否在讲讲领域是如何判断出来的,我很想知道,谢谢啦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
书翊汇6659
2011-06-05
知道答主
回答量:35
采纳率:0%
帮助的人:12万
展开全部
连续 左导数等于右导数
追问
谢谢,具体想问的是补充问题,能给出较详细的解释吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友5cf1818
2011-06-15
知道答主
回答量:7
采纳率:0%
帮助的人:0
展开全部
C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式