如图,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E、F在AC上,且DF交BE于G,角FGE=45°。
如图,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E、F在AC上,且DF交BE于G,角FGE=45°。(1)BG*BE与BD*BC相等吗?为什么?(2)试说...
如图,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E、F在AC上,且DF交BE于G,角FGE=45°。
(1)BG*BE与BD*BC相等吗?为什么?
(2)试说明AG⊥BE
(3)若E为AC的中点,求FE:FD的值。
图:
http://dl.zhishi.sina.com.cn/upload/12/80/12/2158128012.2046473272.png 展开
(1)BG*BE与BD*BC相等吗?为什么?
(2)试说明AG⊥BE
(3)若E为AC的中点,求FE:FD的值。
图:
http://dl.zhishi.sina.com.cn/upload/12/80/12/2158128012.2046473272.png 展开
1个回答
展开全部
证明:(1)BG×BE与BD×BC相等
连接AD
∵ AB=AC, ∠BAC=90°
∴∠ABC=∠C=45°
∵∠BGD=∠FGE=45° (对项角)
∴∠C=∠BGD
∵GBC=∠GBC
∴△GBD∽△CBE
∴ BD/BE=BG/BC
即BD×BC=BG×BE
(2)∵ BD×BC=BG×BE
∴BG= BD×BC/BE= (1/2)BC×BC/BE= AB^2/BE
∴ AB/BG= BE/AB ∠ABG=∠EBA
∴△ABG∽△EBA
∴∠BGA=∠BAE=90°
∴AG⊥BE
(3)∵∠FGE=45° AG⊥BE
所以: GF是∠AGE的平分线
∴ EF/AF=EG/AG
又∵ AE^2=EG×BE ∴ EG=AE^2/BE
∴ EF/AF=EG/AG=AE^2/(EB×AG)
=AE^2/(AE×AB)=AE^2/(AE×2AE)=1/2
所以:EF= (1/3)AE,连接ED,则:DE=(1/2)AB=AE, DE⊥AC
所以:DF^2=DE^2+EF^2=(√10/3)AE
∴EF:FD=1:√10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询