7个回答
展开全部
解:在△ABC内取点D,使得PD//BC且BP=CD,连结AD
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2
又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°
所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°
因为AP=AD,所以△PAD是等边三角形
则PD=AD
所以△PCD≌△ACD (SSS)
则∠PCD=∠ACD=∠PCA/2=60°-a/2
又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2
则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°
所以∠PBC=∠BCD=30°
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2
又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°
所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°
因为AP=AD,所以△PAD是等边三角形
则PD=AD
所以△PCD≌△ACD (SSS)
则∠PCD=∠ACD=∠PCA/2=60°-a/2
又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2
则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°
所以∠PBC=∠BCD=30°
展开全部
解:在△ABC内取点D,使得PD//BC且BP=CD,连结AD
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2
又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°
所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°
因为AP=AD,所以△PAD是等边三角形
则PD=AD
所以△PCD≌△ACD (SSS)
则∠PCD=∠ACD=∠PCA/2=60°-a/2
又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2
则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°
所以∠PBC=∠BCD=30°
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2
又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°
所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°
因为AP=AD,所以△PAD是等边三角形
则PD=AD
所以△PCD≌△ACD (SSS)
则∠PCD=∠ACD=∠PCA/2=60°-a/2
又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2
则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°
所以∠PBC=∠BCD=30°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分别延长CP、AP交AB于E点,交BC于F点,
∵∠BAP=∠PCB,
∴∠PFB=∠PEB,
∴A,E,F,C四点共圆,
∴∠EFB=∠BAC=α,∠EFA=∠ECA,∠FEC=∠CAF,
∴BF=EF,EF=PF,
∴BF=PF
∴∠AFC=∠ABC+∠BAF=90°-α/2+α/2-30°=60°,
∴∠PBC=∠BPF=30°.
∵∠BAP=∠PCB,
∴∠PFB=∠PEB,
∴A,E,F,C四点共圆,
∴∠EFB=∠BAC=α,∠EFA=∠ECA,∠FEC=∠CAF,
∴BF=EF,EF=PF,
∴BF=PF
∴∠AFC=∠ABC+∠BAF=90°-α/2+α/2-30°=60°,
∴∠PBC=∠BPF=30°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
30° 追问过程? 回答这么简单,还要过程?
你几年级的啊? 回答者: Ivypolly | 二级 | 2011-6-5 12:22
简单吗?我怎么没感觉出来?!我是算得有点儿晕头转向了。附加说明,我不是几年级的,而是十几年级的。 会做就帮人做出来嘛,干吗挖苦人?!
你几年级的啊? 回答者: Ivypolly | 二级 | 2011-6-5 12:22
简单吗?我怎么没感觉出来?!我是算得有点儿晕头转向了。附加说明,我不是几年级的,而是十几年级的。 会做就帮人做出来嘛,干吗挖苦人?!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:在△ABC内取点D,使得PD//BC且BP=CD,连结AD则易知四边形BCDP是等腰梯形有∠PBC=∠DCB因为AB=AC,所以∠ABC=∠ACB则∠ABP=∠ACD所以△ABP≌△ACD (SAS)则AP=AD且∠BAP=∠CAD在△ACP中,PC=AC,∠PCA=120°-a则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°因为AP=AD,所以△PAD是等边三角形则PD=AD所以△PCD≌△ACD (SSS)则∠PCD=∠ACD=∠PCA/2=60°-a/2又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°所以∠PBC=∠BCD=30°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-06-05
展开全部
额有已知如图却没图这怎么做啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询