数学题:三角形ABC中,角A,B,C对边的边长分别是a ,b ,c,且a(cosB+cosC)=b+c.
4个回答
展开全部
(1)
∵a/sinA=b/sinB=C/sinC=2R(R为三角形外接圆半径)
所以原式左右各除以2R后,可化为:
sinA(cosB+cosC)=sinB+sinC;而A+B+C=180°。即sinA=sin(B+C)
∴[sin(B+C)]*[cosB+cosC]=sinB+sinC
∴[sinBcosC+sinCcosB]*[cosB+cosC]=sinB+sinC
∴sinBcosBcosC+sinBcos²C+sinCcos²B+sinCcosCcosB=sinB+sinC
∴sinB(cos²C-1+cosBcosC)=sinC(1-cos²B-cosBcosC)
∴sinB(cosBcosC-sin²C)=sinC(sin²B-cosBcosC)
∴(sinB+sinC)(cosB+cosC)=sinCsin²B+sinBsin²C
∴(sinB+sinC)cosBcosC=sinBsinC(sinB+sinC)
∴cosBcosC-sinBsinC=0
∴cos(B+C)=0,即B+C=90°
∴A=90°
(2)
∵外接圆半径R=1
∴a=2RsinA=2,b²+c²=a²=4
∴(b+c)²≤b²+c²+4=8
∴b+c≤2*根号2
而b+c≥2*根号bc
∴b+c>2
∴周长=(a+b+c)∈(4,2+2*根号2]
∵a/sinA=b/sinB=C/sinC=2R(R为三角形外接圆半径)
所以原式左右各除以2R后,可化为:
sinA(cosB+cosC)=sinB+sinC;而A+B+C=180°。即sinA=sin(B+C)
∴[sin(B+C)]*[cosB+cosC]=sinB+sinC
∴[sinBcosC+sinCcosB]*[cosB+cosC]=sinB+sinC
∴sinBcosBcosC+sinBcos²C+sinCcos²B+sinCcosCcosB=sinB+sinC
∴sinB(cos²C-1+cosBcosC)=sinC(1-cos²B-cosBcosC)
∴sinB(cosBcosC-sin²C)=sinC(sin²B-cosBcosC)
∴(sinB+sinC)(cosB+cosC)=sinCsin²B+sinBsin²C
∴(sinB+sinC)cosBcosC=sinBsinC(sinB+sinC)
∴cosBcosC-sinBsinC=0
∴cos(B+C)=0,即B+C=90°
∴A=90°
(2)
∵外接圆半径R=1
∴a=2RsinA=2,b²+c²=a²=4
∴(b+c)²≤b²+c²+4=8
∴b+c≤2*根号2
而b+c≥2*根号bc
∴b+c>2
∴周长=(a+b+c)∈(4,2+2*根号2]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
!!!!!!!!自己好好考、、、
追问
帮帮忙,答对了追加分数!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对不起
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询