抛物线焦点公式
抛物线标准方程:
y2 =2px(p>0)(开口向右);
y2 =-2px(p>0)(开口向左);
x2 =2py(p>0)(开口向上);
x2 =-2py(p>0)(开口向下);
焦点坐标为(p/2,0)
共同点:
1、原点在抛物线上,离心率e均为1 ;
2、对称轴为坐标轴;
3、准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
扩展资料:
对于抛物线y1=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x1=2py,定义域为R。
值域:对于抛物线y1=2px,值域为R,对于抛物线x1=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。
抛物线标准方程:y1=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2。
由于抛物线的焦点可在任意半轴,故共有标准方程y1=2px,y1=-2px,x1=2py,x1=-2py。
参考资料来源:百度百科——抛物线
2024-04-02 广告
抛物线标准方程:
y2 =2px(p>0)(开口向右);
y2 =-2px(p>0)(开口向左);
x2 =2py(p>0)(开口向上);
x2 =-2py(p>0)(开口向下);
焦点坐标为(p/2,0)
共同点:
1、原点在抛物线上,离心率e均为1 ;
2、对称轴为坐标轴;
3、准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
扩展资料:
对于抛物线y1=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x1=2py,定义域为R。
值域:对于抛物线y1=2px,值域为R,对于抛物线x1=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。
抛物线标准方程:y1=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2。
由于抛物线的焦点可在任意半轴,故共有标准方程y1=2px,y1=-2px,x1=2py,x1=-2py。
参考资料来源:百度百科-抛物线
http://www.etiantian.com/jxyl/zsdx/zr/gzsx/tbjx.htm
离心率:e=1
焦点:(p/2,0)
准线方程l:x=-p/2
顶点:(0,0)
通径:2P ;定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦 定义域(X≥0)
值域(Y∈R)。