如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点。 (1)求抛物线的解析式。

(2)在直线AC上方的抛物线上有一点(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条... (2)在直线AC上方的抛物线上有一点
(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由。
展开
guo_linan
2011-06-06 · TA获得超过108个赞
知道答主
回答量:28
采纳率:0%
帮助的人:29.2万
展开全部
(1)用交点式y=a(x-x1)(x-x2)得到y=a(x-4)(x-1),再将(0,-2)代入y=a(x-4)(x-1)中,得到a=-1/2.即得抛物线方程y=-1/2(x-4)(x-1)
(2)存在点P,设P(x,y)此处y不等于0,(因为等于0时不能形成△APM)由已知可得在△OAC中,OA=4,OC=2,所以△APM∽△OAC,有两种情况:
1.当AM/OA=PM/OC,即(4-x)/4=y/2,再联立y=-1/2(x-4)(x-1) ,解得y=1,所以x=3,即P(3,1);
2.当AM/OC=PM/OA,即得(4-x)/2=y/4,再联立y=-1/2(x-4)(x-1) ,解得x=4(舍去,因为代入y=0),x=5,代入得到对应的y=-2,即P(4,-2)
瞳月沧雪
2011-06-06 · TA获得超过575个赞
知道答主
回答量:49
采纳率:0%
帮助的人:49.6万
展开全部
(1)设y=a(x-1)(x-4),即y=ax^2-5ax+4a,
当x=0时,y=4a=-2,即a=-1/2,所以:
   y=-(1/2)x^2+(5/2)x-2.

(2)点D(5/2,9/8)
四边形ADBC的面积=三角形ABD的面积+三角形ABC的面积
=3*(9/8)/2+3*2/2=75/16.

(3)若存在,则 AM/OC=PM/OA 或者 AM/OA=PM/OC,
即:AM/2=PM/4 或者 AM/4=PM/2,
设M(t,0),则x=t时,|PM|=|-(1/2)t^2+(5/2)t-2|,
|AM|=|t-4|,且t不等于0且t不等于4,否则P与A或C重合.
[P与C重合时,两个三角形也重合为一个三角形]
第一种:AM/2=PM/4 ==>|PM|=2|AM|
-(1/2)t^2+(5/2)t-2=2t-8 或 -(1/2)t^2+(5/2)t-2=8-2t
==>t=-3或t=4 或者 t=4或t=5===>t=-3或t=5,即此时两解;
第二种:AM/4=PM/2===>2|PM|=|AM|
-t^2+5t-4=t-4 或者 -t^2+5t-4=4-t
==>t=0或t=4 或者 t=2或t=4===>t=2,即此时一解;
综上所述,共有三种情形:P(-3,1);P(5,-2);P(2,1).

参考资料: 网上找的

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
724831905
2011-06-06 · TA获得超过136个赞
知道答主
回答量:152
采纳率:0%
帮助的人:74.7万
展开全部
设:抛物线为:y=ax²+bx+c,带入A,B,C三点得:a=-0.5;b=3.5;c=-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式