已知向量a=(√3sinx,cosx),b=(cosx,cosx),c=(2√3,1)
1个回答
展开全部
(1)
a//b
=> cosx/(√3sinx) = cosx/cosx
cosx = √3sinx
tanx = 1/√3
sinx. cosx = (1/2) .(√早氏3/2)
= √3/4
(2)
f(x) = a.b
= (√3sinx,cosx).(cosx,cosx)
= √3sinx(cosx)+(cosx)^2
f'(x) = √3[ -(sinx)^2 + (cosx)^2] - 2cosxsinx
= √3cos2x -sin2x >0 ( for 0<x ≤π/3)
f(x) is increasing on (for 0<x ≤山睁派π/3)
= f(π/逗贺6)
= 3/4+ 3/4
= 3/2
a.b 的值域 = (0, 3/2]
a//b
=> cosx/(√3sinx) = cosx/cosx
cosx = √3sinx
tanx = 1/√3
sinx. cosx = (1/2) .(√早氏3/2)
= √3/4
(2)
f(x) = a.b
= (√3sinx,cosx).(cosx,cosx)
= √3sinx(cosx)+(cosx)^2
f'(x) = √3[ -(sinx)^2 + (cosx)^2] - 2cosxsinx
= √3cos2x -sin2x >0 ( for 0<x ≤π/3)
f(x) is increasing on (for 0<x ≤山睁派π/3)
= f(π/逗贺6)
= 3/4+ 3/4
= 3/2
a.b 的值域 = (0, 3/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询