谁知道学知报数学专页武汉专版八年级下一本通2010至2011学年第13版第3问
请最好8号之前回答.有正方形ABCD有一点M在CB边上(不与CB重合),点N在BA延长线上。AN=CM,NF平分∠BNM,交BD于点F,过F作FE垂直MN于E,找出EF,...
请最好8号之前回答.有正方形ABCD有一点M在CB边上(不与CB重合),点N在BA延长线上。AN=CM,NF平分∠BNM,交BD于点F,过F作FE垂直MN于E,找出EF,2分之1MN,AB三者之间的关系,并证明。
展开
2个回答
展开全部
求楼主给个最佳答案 我写的很累的...
证明:(1)如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD于点E.
∴AE= AC,∠ABD=∠CBD=45°,
∵AF平分∠BAC,
∴EF=MF,
又∵AF=AF,
∴Rt△AMF≌Rt△AEF,
∴AE=AM,
∵∠MFB=∠ABF=45°,
∴MF=MB,MB=EF,
∴EF+ AC=MB+AE=MB+AM=AB.
(2)E1F1, A1C1与AB三者之间的数量关系:E1F1+ A1C1=AB
证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,
∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,
又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1,
∴A1E1=A1P,
同理Rt△QF1C1≌Rt△E1F1C1,
∴C1Q=C1E1,
由题意:A1A=C1C,
∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB,
∵PB=PF1=QF1=QB,
∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,
即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,
∴E1F1+ A1C1=AB.
(3)设PB=x,则QB=x,
∵A1E1=3,QC1=C1E1=2,
Rt△A1BC1中,A1B2+BC12=A1C12,
即(3+x)2+(2+x)2=52,
∴x1=1,x2=-6(舍去),
∴PB=1,
∴E1F1=1,
又∵A1C1=5,
由(2)的结论:E1F1+ A1C1=AB,
∴AB= ,
∴BD= .
证明:(1)如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD于点E.
∴AE= AC,∠ABD=∠CBD=45°,
∵AF平分∠BAC,
∴EF=MF,
又∵AF=AF,
∴Rt△AMF≌Rt△AEF,
∴AE=AM,
∵∠MFB=∠ABF=45°,
∴MF=MB,MB=EF,
∴EF+ AC=MB+AE=MB+AM=AB.
(2)E1F1, A1C1与AB三者之间的数量关系:E1F1+ A1C1=AB
证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,
∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,
又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1,
∴A1E1=A1P,
同理Rt△QF1C1≌Rt△E1F1C1,
∴C1Q=C1E1,
由题意:A1A=C1C,
∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB,
∵PB=PF1=QF1=QB,
∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,
即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,
∴E1F1+ A1C1=AB.
(3)设PB=x,则QB=x,
∵A1E1=3,QC1=C1E1=2,
Rt△A1BC1中,A1B2+BC12=A1C12,
即(3+x)2+(2+x)2=52,
∴x1=1,x2=-6(舍去),
∴PB=1,
∴E1F1=1,
又∵A1C1=5,
由(2)的结论:E1F1+ A1C1=AB,
∴AB= ,
∴BD= .
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询