求2011山东高考理科数学试卷word版
4个回答
展开全部
绝密★启用前
2011年普通高等学校招生全国统一考试
理科数学(必修+选修II)
本试卷分第I卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页,第II卷3至4页。考试结束后,将本试卷和答题卡一并交回。
第I卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。在试题上作答无效。
3.第I卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数 =1+ , 为 的共轭复数,则 - -1=
(A)-2 (B)- (C) (D)2
(2)函数 = ( ≥0)的反函数为
(A) = ( ∈R) (B) = ( ≥0)
(C) = ( ∈R) (D) = ( ≥0)
(3)下面四个条件中,使 > 成立的充分而不必要的条件是
(A) > +1 (B) > -1 (C) > (D) >
(4)设 为等差数列 的前n项和,若 ,公差d = 2, ,则k =
(A ) 8 (B) 7 (C) 6 (D) 5
(5) 设函数 ,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,则 的最小值等于
(A) (B)3 (C)6 (D)9
(6)已知直二面角α –ι- β, 点A∈α ,AC ⊥ ι ,C为垂足,B∈β,BD⊥ ι,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于( )
(A) (B) (C) (D) 1
(7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )
(A)4种 (B) 10种 (C) 18种 (D)20种
(8)曲线 在点(0,2)处的切线与直线 和 围成的三角形的面积为
(A) (B) (C) (D)1
(9)设 是周期为2的奇函数,当 时, ,则
(A) (B) (C) (D)
(10)已知抛物线C: =4x的焦点为F,直线y=2x-4与C交于A,B两点,则 cos
(A) (B) (C).— (D) —
(11)已知平面α截一球面得圆M,过圆心M且与 成60̊ 二面角的平面β截该球面得N。若该球面的半径为4,圆M的面积为4л,则圆N的面积为( )
(A) .7л (B). 9л (C). 11л (D). 13л
(12)设向量 满足 , , ,则 的最大值等于( )
(A)2 (B) (C) (D)1
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己凡人名字、准考证号填写清楚,然后贴好条形码,请认真核条形码上凡人准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
3.第Ⅱ卷共10小题,共90分。
二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中横线上。(注意:在试题卷上作答无效)
(13)(1- )20的二项展开式中,x 的系数与x9的系数之差为____________________.
(14)已知 ,sin = ,则tan2 =______________
(15)已知F1、F2分别为双曲线C: 的左、右焦点,点 ,点M的坐标为(2,0),AM为∠F1AF2的平分线,则 ______________
(16)已知E、F分别在正方形ABCD、A1B1C1D1楞BB1,CC1上,且B1F=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于_______________。
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效)
△ ABC的内角A、B、C的对边分别为a、b、c.已知A-C=90°,a+c= ,求C.
(18)(本小题满分12分)(注意:在试题卷上作答无效)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种概率;
(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.
(19)(本小题满分12分)(注意:在试题卷上作答无效)
如图,棱锥 中, ∥ , ⊥ ,侧面 为等边三角形, = =2, = =1。
(I)证明: ⊥平面 ;
(II)求 与平面 所成的角的大小。
(20)(本小题满分12分)(注意:在试题卷上作答无效)
设数列 满足 且 。
(I)求 的通项公式;
(II)设 ,记 ,证明: 。
(21)(本小题满分12分)(注意:在试题卷上答无效)
已知O为坐标原点,F为椭圆C: 在 轴正半轴上的焦点,过F且斜率为- 的直线 与C交于A、B两点,点P满足 .
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上。
(22)(本小题满分12分)(注意:在试题卷上答无效)
(Ⅰ)设函数 ,证明:当 >0时, >0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互补相同的概率为 .证明: <( )^19< .
2011年普通高等学校招生全国统一考试
理科数学(必修+选修II)
本试卷分第I卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页,第II卷3至4页。考试结束后,将本试卷和答题卡一并交回。
第I卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。在试题上作答无效。
3.第I卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数 =1+ , 为 的共轭复数,则 - -1=
(A)-2 (B)- (C) (D)2
(2)函数 = ( ≥0)的反函数为
(A) = ( ∈R) (B) = ( ≥0)
(C) = ( ∈R) (D) = ( ≥0)
(3)下面四个条件中,使 > 成立的充分而不必要的条件是
(A) > +1 (B) > -1 (C) > (D) >
(4)设 为等差数列 的前n项和,若 ,公差d = 2, ,则k =
(A ) 8 (B) 7 (C) 6 (D) 5
(5) 设函数 ,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,则 的最小值等于
(A) (B)3 (C)6 (D)9
(6)已知直二面角α –ι- β, 点A∈α ,AC ⊥ ι ,C为垂足,B∈β,BD⊥ ι,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于( )
(A) (B) (C) (D) 1
(7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )
(A)4种 (B) 10种 (C) 18种 (D)20种
(8)曲线 在点(0,2)处的切线与直线 和 围成的三角形的面积为
(A) (B) (C) (D)1
(9)设 是周期为2的奇函数,当 时, ,则
(A) (B) (C) (D)
(10)已知抛物线C: =4x的焦点为F,直线y=2x-4与C交于A,B两点,则 cos
(A) (B) (C).— (D) —
(11)已知平面α截一球面得圆M,过圆心M且与 成60̊ 二面角的平面β截该球面得N。若该球面的半径为4,圆M的面积为4л,则圆N的面积为( )
(A) .7л (B). 9л (C). 11л (D). 13л
(12)设向量 满足 , , ,则 的最大值等于( )
(A)2 (B) (C) (D)1
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己凡人名字、准考证号填写清楚,然后贴好条形码,请认真核条形码上凡人准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
3.第Ⅱ卷共10小题,共90分。
二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中横线上。(注意:在试题卷上作答无效)
(13)(1- )20的二项展开式中,x 的系数与x9的系数之差为____________________.
(14)已知 ,sin = ,则tan2 =______________
(15)已知F1、F2分别为双曲线C: 的左、右焦点,点 ,点M的坐标为(2,0),AM为∠F1AF2的平分线,则 ______________
(16)已知E、F分别在正方形ABCD、A1B1C1D1楞BB1,CC1上,且B1F=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于_______________。
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效)
△ ABC的内角A、B、C的对边分别为a、b、c.已知A-C=90°,a+c= ,求C.
(18)(本小题满分12分)(注意:在试题卷上作答无效)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种概率;
(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.
(19)(本小题满分12分)(注意:在试题卷上作答无效)
如图,棱锥 中, ∥ , ⊥ ,侧面 为等边三角形, = =2, = =1。
(I)证明: ⊥平面 ;
(II)求 与平面 所成的角的大小。
(20)(本小题满分12分)(注意:在试题卷上作答无效)
设数列 满足 且 。
(I)求 的通项公式;
(II)设 ,记 ,证明: 。
(21)(本小题满分12分)(注意:在试题卷上答无效)
已知O为坐标原点,F为椭圆C: 在 轴正半轴上的焦点,过F且斜率为- 的直线 与C交于A、B两点,点P满足 .
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上。
(22)(本小题满分12分)(注意:在试题卷上答无效)
(Ⅰ)设函数 ,证明:当 >0时, >0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互补相同的概率为 .证明: <( )^19< .
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询