已知f(x)=-1/2+(sin2x/5)/(2sinx/2),X属于(0,π)。求:1、将f(x)表示成cosx的多项式2、求f(x)的最小值
2个回答
展开全部
f(x)=-1/2+(5/2)sin2x/sin(x/2)
=-1/2+(5/2)2sinxcosx/sin(x/2)
=-1/2+(5/2)4sin(x/2)cos(x/2)cosx/sin(x/2)
=-1/2+10cosxcosx/2
=-1/2+10cosx√(cosx+1)/2.
f(x)=-1/2+(1/2)sin(5x/2)/sin(x/2)
=-1/2+(1/2)sin(2x+x/2)/sin(x/2)
=-1/2+(1/2)[sin2xctg(x/2)+cos2x]
设cosx=t,则有:
sin2x=2sinxcosx=2t√(1-t^2);
ctgx/2=cosx/2/sinx/2=√(1+t)/√(1-t)
cos2x=2cos^2x-1=2t^2-1.
代入得到:
f(x)=-1/2+(1/2)(4t^2+2t-1)=2t^2+t-1.
f(x)=2(cosx+1/4)^2-9/8.
所以当cosx=0,有最小值,最小值=-1.
=-1/2+(5/2)2sinxcosx/sin(x/2)
=-1/2+(5/2)4sin(x/2)cos(x/2)cosx/sin(x/2)
=-1/2+10cosxcosx/2
=-1/2+10cosx√(cosx+1)/2.
f(x)=-1/2+(1/2)sin(5x/2)/sin(x/2)
=-1/2+(1/2)sin(2x+x/2)/sin(x/2)
=-1/2+(1/2)[sin2xctg(x/2)+cos2x]
设cosx=t,则有:
sin2x=2sinxcosx=2t√(1-t^2);
ctgx/2=cosx/2/sinx/2=√(1+t)/√(1-t)
cos2x=2cos^2x-1=2t^2-1.
代入得到:
f(x)=-1/2+(1/2)(4t^2+2t-1)=2t^2+t-1.
f(x)=2(cosx+1/4)^2-9/8.
所以当cosx=0,有最小值,最小值=-1.
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询