什么是加法分配律、加法结合律和加法交换律?
加法运算律只有交换律和结合律。
1.加法交换律:在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。此定律为人民教育出版社小学人教版四年级下册数学第三单元的学习内容。
示例:
字母: a+b=b+a a+c=c+a
数字: 1+2=2+1 16+30=30+16
2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加。和不变,这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)。
示例:
字母表示:a+b+c=a+(b+c)
数字表示:18+5+15=18+(5+15)=38
拓展资料:
加法交换律是数学计算的法则之一。指两个加数相加,交换加数的位置,和不变。
交换律是二元运算的一个性质,意指在一个包含有二个以上的可交换运算子的表示式,只要算子没有改变,其运算的顺序就不会对运算出来的值有影响。
尽管这一定律看上去似乎对于任何事物都显然成立,但事实并非如此。在没有时间的空间下(三维以内),加法交换律是完全正确的。但是一旦有了时间轴,这个定律就不成立了。
证明这个理论的实验之一如下:
(1)取一个方体物体,如较厚的书或者魔方之类皆可。将其平放在水平台上。
(2)现令正对上方的一面,平行与桌面对着你的一面和平行桌面在你右边的面为面一、二、三。各自相对的面为面四五六。
(3)定义操作a为将此长方体翻转180度。即面三、六不动,一四交换,二五交换。定义操作b为将左边的面翻至上方。
(4)执行a+b后,向上的一面为面六。执行b+a后,向上的一面为面三。显然a+b不等于b+a。
此外对于无穷多个数相加,使用加法交换律,结果可能是错误的。
加法结合律是指三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。结合律是二元运算可以有的一个性质,意指在一个包含有二个以上的可结合运算子的表示式,只要算子的位置没有改变,其运算的顺序就不会对运算出来的值有影响。
加法交换律是数学计算的法则之一。指两个加数相加,交换加数的位置,和不变。没有加分分配律的说法。
加法结合律是指三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。结合律是二元运算可以有的一个性质,意指在一个包含有二个以上的可结合运算子的表示式,只要算子的位置没有改变,其运算的顺序就不会对运算出来的值有影响。
扩展资料
加法交换律和加法结合律是针对加法进行的运算律,乘法交换律和乘法结合律是针对乘法的运算律;交换律改变的是加数和乘数的位置,计算顺序不变;而结合律是不交换数的位置,只是通过增加括号来改变运算的顺序。
乘法结合律是乘法运算的一种,也是众多简便方法之一。三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
乘法结合律:(a×b)×c=a×(b×c)
加法结合律是三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
加法结合律:a+b+c=a+(b+c)
参考资料来源:百度百科—加法结合律
没有加法分配律
加法运算律只有交换律和结合律
交换律:a+b=b+a
加法结合律即三个数相加,先把前两个数相加,或者先把后两个数相加。和不变,这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)。
加法交换律是数学计算的法则之一。指两个加数相加,交换加数的位置,和不变。用字母表示为:a+b=b+a。
扩展资料
加法交换律:a+b=b+a
例:8+1=1+8=9 100+2=2+100=102
加法结合律:a+b+c=a+(b+c)
例:7+4+1=7+(4+1)=(7+4)+1=12 10-5+2=(10+2)-5=7
乘法分配律:(a+b)×c=a×c+b×c
乘法结合律:(a×b)×c=a×(b×c)
乘法交换律:a×b=b×a
参考资料:百度百科——加法
1.加法交换律:在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。此定律为人民教育出版社小学人教版四年级下册数学第三单元的学习内容。
示例:
字母: a+b=b+a a+c=c+a
数字: 1+2=2+1 16+30=30+16
2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加。和不变,这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)。
示例:
字母表示:a+b+c=a+(b+c)
数字表示:18+5+15=18+(5+15)=38
拓展资料:
加法交换律是数学计算的法则之一。指两个加数相加,交换加数的位置,和不变。
交换律是二元运算的一个性质,意指在一个包含有二个以上的可交换运算子的表示式,只要算子没有改变,其运算的顺序就不会对运算出来的值有影响。
尽管这一定律看上去似乎对于任何事物都显然成立,但事实并非如此。在没有时间的空间下(三维以内),加法交换律是完全正确的。但是一旦有了时间轴,这个定律就不成立了。
证明这个理论的实验之一如下:
(1)取一个方体物体,如较厚的书或者魔方之类皆可。将其平放在水平台上。
(2)现令正对上方的一面,平行与桌面对着你的一面和平行桌面在你右边的面为面一、二、三。各自相对的面为面四五六。
(3)定义操作a为将此长方体翻转180度。即面三、六不动,一四交换,二五交换。定义操作b为将左边的面翻至上方。
(4)执行a+b后,向上的一面为面六。执行b+a后,向上的一面为面三。显然a+b不等于b+a。
此外对于无穷多个数相加,使用加法交换律,结果可能是错误的。
加法结合律是指三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。结合律是二元运算可以有的一个性质,意指在一个包含有二个以上的可结合运算子的表示式,只要算子的位置没有改变,其运算的顺序就不会对运算出来的值有影响。加法运算律只有交换律和结合律。
1.加法交换律:在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。此定律为人民教育出版社小学人教版四年级下册数学第三单元的学习内容。
示例:
字母: a+b=b+a a+c=c+a
数字: 1+2=2+1 16+30=30+16
2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加。和不变,这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)。
示例:
字母表示:a+b+c=a+(b+c)
数字表示:18+5+15=18+(5+15)=38
拓展资料:
加法交换律是数学计算的法则之一。指两个加数相加,交换加数的位置,和不变。
交换律是二元运算的一个性质,意指在一个包含有二个以上的可交换运算子的表示式,只要算子没有改变,其运算的顺序就不会对运算出来的值有影响。
尽管这一定律看上去似乎对于任何事物都显然成立,但事实并非如此。在没有时间的空间下(三维以内),加法交换律是完全正确的。但是一旦有了时间轴,这个定律就不成立了。
证明这个理论的实验之一如下:
(1)取一个方体物体,如较厚的书或者魔方之类皆可。将其平放在水平台上。
(2)现令正对上方的一面,平行与桌面对着你的一面和平行桌面在你右边的面为面一、二、三。各自相对的面为面四五六。
(3)定义操作a为将此长方体翻转180度。即面三、六不动,一四交换,二五交换。定义操作b为将左边的面翻至上方。
(4)执行a+b后,向上的一面为面六。执行b+a后,向上的一面为面三。显然a+b不等于b+a。
此外对于无穷多个数相加,使用加法交换律,结果可能是错误的。
加法结合律是指三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。结合律是二元运算可以有的一个性质,意指在一个包含有二个以上的可结合运算子的表示式,只要算子的位置没有改变,其运算的顺序就不会对运算出来的值有影响。