已知a,b,c为有理数,且满足a^2+b^2+c^2=1,a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=-3,求a+b+c的值

电灯剑客
科技发烧友

2011-06-08 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4751万
展开全部
先通分得到
a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=0
因式分解得到
(a+b+c)(ab+bc+ca)=0
另一个条件是
(a+b+c)^2-2(ab+bc+ca)=1
解出三组解(a+b+c, ab+bc+ca):(1,0), (-1,0), (0,-1/2)
前两组解符合条件,比如取(a,b,c)=(-1/3,2/3,2/3)或(1/3,-2/3,-2/3);
但是最后一组不符合,因为a+b+c=0得到a^2+b^2+(a+b)^2=1,利用求根公式可以得到
b=[-a+sqrt(2-3a^2)]/2或b=[-a-sqrt(2-3a^2)]/2
利用关于模8同余容易说明方程2x^2-3y^2=z^2没有非零解,所以a,b,c不能同时是有理数。
最后得到a+b+c=1或a+b+c=-1。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式