不妨设x≥y≥z, 1/yz≥1/xz≥1/xy
利用排序不等式 :顺序和不小于乱序和
u≥z(1/yz)+x(1/xz)+y(1/xy) =1/x+1/y+1/z=p
由已知1/(yz)+1/(xz)+1/(xy)≥1
而1/x2+1/y2+1/z2=1/2·[(1/x2+1/y2)+(1/x2+1/z2)+(1/y2+1/z2)]
≥1/2·[2/(yz)+2/(xz)+2/(xy)]= 1/(yz)+1/(xz)+1/(xy)≥1
p的平方=(1/x+1/y+1/z)2= 1/x2+1/y2+1/z2+2/(yz)+2/(xz)+2/(xy)≥1+2=3
u≥√3