在平面直角坐标系X0Y中,直线L与抛物线Y^2=4X相交于不同的A,B两点 1)若直线L过抛物线的焦点

求向量OAX向量OB的值2)若向量OBX向量OA=-4,证明直线L必过定点,求该点... 求向量OAX向量OB的值
2)若向量OBX向量OA=-4,证明直线L必过定点,求该点
展开
 我来答
pri600
2011-06-09 · TA获得超过812个赞
知道小有建树答主
回答量:141
采纳率:100%
帮助的人:63.6万
展开全部
(1)设A(x1, y1) B(x2, y2),因A、B在抛物线上,故A(y1^2/4, y1) B(y2^2/4, y2)
抛物线焦点为(1, 0) ,当直线L存在斜率时,设直线L方程为y=k(x-1),将其与抛物线方程联立,消去y,整理得:ky^2-4y-4k=0,根据韦达定理有:y1y2=-4
向量OA•向量OB=x1x2+y1y2=(y1y2)^2/16+y1y2=(-4)^2/16-4=-3
当直线L斜率不存在时,L方程为x=1,则A、B坐标分别为(1, 2)、(1, -2)
此时向量OA•向量OB=1×1+2×(-2)=-3
综上所述,向量OA•向量OB=-3
(2)设直线L方程为Ax+By+C=0,将其与将其与抛物线方程联立,消去y,整理得:A/4y^2+By+C=0,根据韦达定理有:y1y2=4C/A
向量OA•向量OB=x1x2+y1y2=(y1y2)^2/16+y1y2=-4,解出y1y2=-8
则4C/A=-8,C=-2A,直线L方程化为Ax+By-2A=0,变形为 (x-2)A+yB=0 ①
当x-2=0且y=0时,①式恒成立,因此直线L过定点(2,0)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式