设cos(a-b)=-4/5,cos(a+b)=12/13,45°<a-b<90°,270°<a+b<360°,求cos2a,cos2b
2个回答
展开全部
解:
45°<a-b<90°,
270°<a+b<360°
cos(a-b)=-4/5,
sin(a-b)=√(1-16/25)=3/5
cos(a+b)=12/13
sin(a+b)=-√(1-144/169)=-5/13
cos2a=cos[(a-b)+(a+b)]
=cos(a-b)cos(a+b)-sin(a-b)sin(a+b)
=(-4/5)*(12/13)-(3/5)*(-5/13)
=-33/65
cos2b=cos[(a+b)-(a-b)]
=cos(a-b)cos(a+b)+sin(a-b)sin(a+b)
=(-4/5)*(12/13)+(3/5)*(-5/13)
=-63/65
45°<a-b<90°,
270°<a+b<360°
cos(a-b)=-4/5,
sin(a-b)=√(1-16/25)=3/5
cos(a+b)=12/13
sin(a+b)=-√(1-144/169)=-5/13
cos2a=cos[(a-b)+(a+b)]
=cos(a-b)cos(a+b)-sin(a-b)sin(a+b)
=(-4/5)*(12/13)-(3/5)*(-5/13)
=-33/65
cos2b=cos[(a+b)-(a-b)]
=cos(a-b)cos(a+b)+sin(a-b)sin(a+b)
=(-4/5)*(12/13)+(3/5)*(-5/13)
=-63/65
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询