详细讲解两角和与差的正弦余弦和正切公式

百度网友1450742
2011-06-09 · TA获得超过241个赞
知道答主
回答量:143
采纳率:0%
帮助的人:46万
展开全部
正弦、余弦的和差化积公式
  指高中数学三角函数部分的一组恒等式
  sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
  sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
  cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
  cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】   
 以上四组公式可以由积化和差公式推导得到
证明过程
  法1 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程   
因为
  sin(α+β)=sin αcos β+cos αsin β,
  sin(α-β)=sin αcos β-cos αsin β,   
将以上两式的左右两边分别相加,得
  sin(α+β)+sin(α-β)=2sin αcos β,
  设 α+β=θ,α-β=φ
  那么
  α=(θ+φ)/2, β=(θ-φ)/2
  把α,β的值代入,即得
  sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
  法2
  根据欧拉公式,e ^Ix=cosx+isinx
  令x=a+b
  得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb=sinbcosa)=cos(a+b)+isin(a+b)
  所以cos(a+b)=cosacosb-sinasinb
  sin(a+b)=sinacosb=sinbcosa
正切的和差化积
  tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
  cotα±cotβ=sin(β±α)/(sinα·sinβ)
  tanα+cotβ=cos(α-β)/(cosα·sinβ)
  tanα-cotβ=-cos(α+β)/(cosα·sinβ)
  证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
  =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
  =sin(α±β)/(cosα·cosβ)=右边
  ∴等式成立
注意事项
  在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次
  口诀
  正加正,正在前,余加余,余并肩
  正减正,余在前,余减余,负正弦
  反之亦然   生动的口诀:(和差化积)
  帅+帅=帅哥
  帅-帅=哥帅
  哥+哥=哥哥
  哥-哥=负嫂嫂
  反之亦然
GamryRaman
2023-06-12 广告
恒电位仪测量极化曲线的原理是通过测量电极在不同电位下的电流变化,来确定电极的极化程度和电位值。具体来说,恒电位仪会将电极依次恒定在不同的数值上,然后通过测量对应于各电位下的电流来计算电极的极化程度和电位值。在测量过程中,为了尽可能接近体系的... 点击进入详情页
本回答由GamryRaman提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式