(x+a/x)(2x-1/x)^5的展开式中各项系数的和为2,则该展开式中常数项为? 答案为 40 ,求解过程

如何求a值?... 如何求a 值? 展开
zhuzhubobo1
2014-05-31
知道答主
回答量:7
采纳率:0%
帮助的人:7.1万
展开全部
(x+a/x)(2x-1/x)^5展开式中各项系数的和为2
即:当x=1时,展开式中各项系数的和为2
(1+a)(2-1)^5=2,
1+a=2,a=1

(x+1/x)(2x-1/x)^5的常数项
=x*(2x-1/x)^5+(1/x)(2x-1/x)^5
x*(2x-1/x)^5的常数项:=x*C(n,5)(2x)^(5-n)(-1/x)^n
=x*C(n,5)2^(5-n)*x^(5-n)*(-1)^n*(x)^(-n)
=C(n,5)2^(5-n)*(-1)^n*x^(1+5-n-n)
即当1+5-n-n=0时,为常数项,解得n=3, x*(2x-1/x)^5的常数项值为C(3,5)2^3*(-1)^3=-80
同理求出(1/x)(2x-1/x)^5的常数项:=(1/x)*C(n,5)(2x)^(5-n)(-1/x)^n
=C(n,5)2^(5-n)*(-1)^n*x^(-1+5-n-n)
即当-1+5-n-n=0时,为常数项,解得n=2,(1/x)*(2x-1/x)^5的常数项值为C(2,5)2^2*(-1)^2=40
所以(x+1/x)(2x-1/x)^5的常数项为-80+40=-40
yuzhulianyi1
2012-04-08
知道答主
回答量:1
采纳率:0%
帮助的人:1645
展开全部
令x=1
则有(1+a)=2
所以a=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式