四边形ABCD中,AB=CD,E,F分别为BC,AD中点,BA及EF ,的延长线交与M,EF的延长线交于N,求证:角AME=角DNE

不要用连接AC,作AC中点G连接EG,FG所以EG‖1/2AB且EG=1/2ABFG‖1/2CD且FG=1/2CD所以角GFE=角GEF因为FG‖1/2CDEG‖1/2A... 不要用 连接AC,作AC中点G
连接EG,FG
所以EG‖1/2AB 且EG=1/2AB
FG‖1/2CD 且FG=1/2CD
所以角GFE=角GEF
因为FG‖1/2CD EG‖1/2AB
所以角AME=角GEF
角GFE=角DNE
所以角AME=角DNE 用另1种 求求啦 很急
展开
百度网友7fbcd93538
2011-06-09 · TA获得超过11万个赞
知道大有可为答主
回答量:8799
采纳率:54%
帮助的人:4920万
展开全部
取BD中点Q,连QE,QF,
因为E、F分别是BC、AD的中点,
所以QE,QF分别是△BCD,△ABD的中位线,
所以QE=CD/2,FQ=AB/2,QE∥CD,QF∥AB,
因为AB=CD
所以QF=QE,∠QFE=∠AMF,∠QEF=∠DNF
所以∠QFE=∠QEF,
所以∠AMF=∠DNF
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式