如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向
点D开始向点A以1cm/s的速度移动,如果p、Q同时出发,用t(s)表示运动时间(0≤t6≤),那么当t为何值时,以Q、A、p为定点的三角形与△ABC相似?...
点D开始向点A以1cm/s的速度移动,如果p、Q同时出发,用t(s)表示运动时间(0≤t6≤),那么当t为何值时,以Q、A、p为定点的三角形与△ABC相似?
展开
5个回答
展开全部
分析:(1)只要把QA、AP用含t的代数式表示,利用QA=AP求解;(2)可以分别求出△QAC和△APC的面积;(3)同例4一样,要分两种情况求解.
解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得t=2(秒).
所以当t=2秒时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC= QA•DC= (6-t)•12=36-6t.
∵在△APC中,AP=2t,BC=6,
∴S△APC= AP•BC= •2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=36-6t+6t=36(cm 2).
由计算结果发现:在P、Q两点的移动过程中,四边形QAPC的面积始终保持不变.(也可以提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来求解:
当 时,△QAP∽△ABC.
∴ .
解得t=1.2(s).
∴当t=1.2 s时,△QAP∽△ABC.
当 时,△PAQ∽△ABC.
∴ .
解得t=3(秒).
∴当t=3 s时,△PAQ∽△ABC.
解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得t=2(秒).
所以当t=2秒时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC= QA•DC= (6-t)•12=36-6t.
∵在△APC中,AP=2t,BC=6,
∴S△APC= AP•BC= •2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=36-6t+6t=36(cm 2).
由计算结果发现:在P、Q两点的移动过程中,四边形QAPC的面积始终保持不变.(也可以提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来求解:
当 时,△QAP∽△ABC.
∴ .
解得t=1.2(s).
∴当t=1.2 s时,△QAP∽△ABC.
当 时,△PAQ∽△ABC.
∴ .
解得t=3(秒).
∴当t=3 s时,△PAQ∽△ABC.
参考资料: http://zhidao.baidu.com/question/163764801.html?fr=qrl&cid=983&index=2&fr2=query
展开全部
解:以点Q、A、P为顶点的三角形与△ABC相似,
所以△ABC∽△PAQ或△ABC∽△QAP
(1)当△ABC∽△PAQ时
ABAP=BCAQ
所以152t=1010-t
解得:t=6;
(2)当△ABC∽△QAP时
CBAP=BAAQ
所以102t=1510-t
解得:t=307;
③当△AQP∽△BAC时,
AQBA=APBC,即10-t15=2t10,
所以t=52;
④当△AQP∽△BCA时,
AQBC=APBA,即10-t10=2t15,
所以t=30(舍去).
所以△ABC∽△PAQ或△ABC∽△QAP
(1)当△ABC∽△PAQ时
ABAP=BCAQ
所以152t=1010-t
解得:t=6;
(2)当△ABC∽△QAP时
CBAP=BAAQ
所以102t=1510-t
解得:t=307;
③当△AQP∽△BAC时,
AQBA=APBC,即10-t15=2t10,
所以t=52;
④当△AQP∽△BCA时,
AQBC=APBA,即10-t10=2t15,
所以t=30(舍去).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:(1)只要把QA、AP用含t的代数式表示,利用QA=AP求解;(2)可以分别求出△QAC和△APC的面积;(3)同例4一样,要分两种情况求解.
解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得t=2(秒).
所以当t=2秒时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC= QA•DC= (6-t)•12=36-6t.
∵在△APC中,AP=2t,BC=6,
∴S△APC= AP•BC= •2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=36-6t+6t=36(cm 2).
由计算结果发现:在P、Q两点的移动过程中,四边形QAPC的面积始终保持不变.(也可以提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来求解:
当 时,△QAP∽△ABC.
∴ .
解得t=1.2(s).
∴当t=1.2 s时,△QAP∽△ABC.
当 时,△PAQ∽△ABC.
∴ .
解得t=3(秒).
∴当t=3 s时,△PAQ∽△ABC.
解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得t=2(秒).
所以当t=2秒时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC= QA•DC= (6-t)•12=36-6t.
∵在△APC中,AP=2t,BC=6,
∴S△APC= AP•BC= •2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=36-6t+6t=36(cm 2).
由计算结果发现:在P、Q两点的移动过程中,四边形QAPC的面积始终保持不变.(也可以提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来求解:
当 时,△QAP∽△ABC.
∴ .
解得t=1.2(s).
∴当t=1.2 s时,△QAP∽△ABC.
当 时,△PAQ∽△ABC.
∴ .
解得t=3(秒).
∴当t=3 s时,△PAQ∽△ABC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:由题意知:DQ=tcm,AP=2tcm,则:AQ=(6-t)cm,AP=2tcm
由题意分析可知:有两种情况
由HL定理知:
第一种情况:AQ/AB=AP/BC,则:(6-t)/12=2t/6 解得:t=1.2s
第二种情况:AQ/BC=AP/AB,则:(6-t)/6=2t/12 解得:t=3s
由题意分析可知:有两种情况
由HL定理知:
第一种情况:AQ/AB=AP/BC,则:(6-t)/12=2t/6 解得:t=1.2s
第二种情况:AQ/BC=AP/AB,则:(6-t)/6=2t/12 解得:t=3s
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询