当 a取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解.
线性方程组为第一行ax1+x2+x3=1第二行x1+ax2+x3=a第三行x1+x2+ax3=a的平方...
线性方程组为第一行ax1+x2+x3=1第二行x1+ax2+x3=a第三行x1+x2+ax3=a的平方
展开
展开全部
经典题, 现成的结论: (把λ换成a)
先计算系数矩阵的行列式
λ 1 1
1 λ 1
1 1 λ
= (λ+2)(λ-1)^2.
当λ≠1 且λ≠-2 时, 由Crammer法则知有唯一解.
当λ=1时, 增广矩阵为
1 1 1 1
1 1 1 1
1 1 1 1
->
1 1 1 1
0 0 0 0
0 0 0 0
通解为: (1,0,0)'+c1(-1,1,0)'+c2(-1,0,1)'
当λ=-2时, 增广矩阵为
-2 1 1 1
1 -2 1 -2
1 1 -2 4
r3+r1+r2
-2 1 1 1
1 -2 1 -2
0 0 0 3
此时方程组无解.
[注: 此方法只在方程组的方程个数与未知量个数相同时才能用]
先计算系数矩阵的行列式
λ 1 1
1 λ 1
1 1 λ
= (λ+2)(λ-1)^2.
当λ≠1 且λ≠-2 时, 由Crammer法则知有唯一解.
当λ=1时, 增广矩阵为
1 1 1 1
1 1 1 1
1 1 1 1
->
1 1 1 1
0 0 0 0
0 0 0 0
通解为: (1,0,0)'+c1(-1,1,0)'+c2(-1,0,1)'
当λ=-2时, 增广矩阵为
-2 1 1 1
1 -2 1 -2
1 1 -2 4
r3+r1+r2
-2 1 1 1
1 -2 1 -2
0 0 0 3
此时方程组无解.
[注: 此方法只在方程组的方程个数与未知量个数相同时才能用]
展开全部
可以用线性代数方面知识解答~由于这是一个非齐次线性方程,所以只要看系数矩阵和增广矩阵的秩是否相等,如果相等就有解,若不相等就无解;当矩阵的秩等于未知数的个数时,有唯一解,小于未知数个数时有无穷多个解`
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先列出系数矩阵,再化为行阶梯。把对角上的元素相乘等零,分情况讨论。增光矩阵的秩与系数矩阵的秩相比较。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先算出D,Dx1, Dx2, Dx3
当D不等于0时,算出方程有唯一解
当D=0时 (i)Dx1或 Dx2或 Dx3 不等于0时方程无解
(ii)Dx1, Dx2, Dx3都等于0时方程有无穷多解
当D不等于0时,算出方程有唯一解
当D=0时 (i)Dx1或 Dx2或 Dx3 不等于0时方程无解
(ii)Dx1, Dx2, Dx3都等于0时方程有无穷多解
追问
能给写写具体的过程吗?
追答
这过程打不出来啊。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |